

Django Evolution Documentation

Django Evolution is a database schema migration tool for projects using the
Django [https://www.djangoproject.com/] web framework. Its job is to help projects make changes to a
database’s schema – the structure of the tables and columns and indexes –
in the fastest way possible (incurring minimum downtime) and in a way that
works across all Django-supported databases.

This is very similar in concept to the built-in migrations support in
Django 1.7 and higher. Django Evolution predates both Django’s own migrations,
and works alongside it to transition databases taking advantage of the
strengths of both migrations and evolutions.

While most will be fine with migrations, there’s a couple reasons why
you might find Django Evolution a worthwhile addition to your project:

	You’re still stuck on Django 1.6 or earlier and need to make changes to
your database.

Django 1.6 is the last version without built-in support for migrations,
and there are still codebases out there using it. Django Evolution can
help keep upgrades manageable, and make it easier to transition all or
part of your codebase to migrations when you finally upgrade.

	You’re distributing a self-installable web application, possibly used in
large enterprises, where you have no control over when people are going to
upgrade.

Django’s migrations assume some level of planning around when changes are
made to the schema and when they’re applied to a database. The more changes
you make, and the more versions in-between what the user is running and
what they upgrade to, the longer the upgrade time.

If a customer is in control of when they upgrade, they might end up with
years of migrations that need to be applied.

Migrations apply one-by-one, possibly triggering the rebuild of a
table many times during an upgrade. Django Evolution, on the other hand,
can apply years worth of evolutions at once, optimized to perform as few
table changes as possible. This can take days, hours or even seconds off
the upgrade time.

Django Evolution officially supports Django 1.6 through 4.2.

Questions So Far?

	How Does It Work?

	Frequently Asked Questions
	Who maintains Django Evolution?

	Where do I go for support?

	What about bug reports?

	How do I contribute patches/pull requests?

	Why evolutions and not migrations?

	Can I switch apps from evolutions to migrations?

	Can I switch apps from migrations to evolutions?

	Why do my syncdb/migrate commands act differently?

Let’s Get Started

	Install Django Evolution

	Writing Your First Evolution

	Exploring App and Model Mutations

	Apply evolutions with `evolve –execute`

Reference

	Management Commands
	evolution-project-sig

	evolve

	list-evolutions

	mark-evolution-applied

	wipe-evolution

	Project Versioning Policy

	Module and Class References

	Release Notes
	2.x Releases
	Django Evolution 2.3

	Django Evolution 2.2

	Django Evolution 2.1.4

	Django Evolution 2.1.3

	Django Evolution 2.1.2

	Django Evolution 2.1.1

	Django Evolution 2.1

	Django Evolution 2.0

	0.7 Releases
	Django Evolution 0.7.8

	Django Evolution 0.7.7

	Django Evolution 0.7.6

	Django Evolution 0.7.5

	Django Evolution 0.7.4

	Django Evolution 0.7.3

	Django Evolution 0.7.2

	Django Evolution 0.7.1

	Django Evolution 0.7

	Django Evolution 0.7 Beta 1

	0.6 Releases
	Django Evolution 0.6.9

	Django Evolution 0.6.8

	Django Evolution 0.6.7

	Django Evolution 0.6.6

	Django Evolution 0.6.5

	Django Evolution 0.6.4

	Django Evolution 0.6.3

	Django Evolution 0.6.2

	Django Evolution 0.6.1

	Django Evolution 0.6

	0.5 Releases
	Django Evolution 0.5.1

	Django Evolution 0.5

How Does It Work?

Django Evolution tracks all the apps in your Django project, recording
information on the structure of models, their fields, indexes, and so on.

When you make any change to a model that would need to be reflected in
the database, Django Evolution will tell you that you’ll need an evolution
file to apply those changes, and will suggest one for you.

Evolution files describe one or more changes made to models in an app. They
can:

	Add fields

	Change the attributes on fields

	Rename fields

	Delete fields

	Change the indexes or constraints on a model

	Rename models

	Delete models

	Rename apps

	Delete apps

	Transition an app to Django’s migrations

	Run arbitrary SQL

Django Evolution looks at the last-recorded state of your apps, the current
state, and the evolution files. If those evolution files are enough to update
the database to the current state, then Django Evolution will process them,
turning them into an optimized list of SQL statements, and apply them to the
database.

This can be done for the entire database as a whole, or for specific apps in
the database.

Since some apps (particularly Django’s own apps) make use of migrations (on
Django 1.7 and higher), Django Evolution will also handle applying those
migrations. It will do this in cooperation with the evolution files that it
also needs to apply. However, it’s worth pointing out that migrations are
never optimized the way evolutions are (this is currently a limitation in
Django).

Frequently Asked Questions

Who maintains Django Evolution?

Originally, Django Evolution was built by two guys in Perth, Australia: Ben
Khoo and Russell Keith-Magee (a core developer on Django).

Since then, Django Evolution has been taken over by Beanbag, Inc. [https://www.beanbaginc.com/]. We have
a vested interest in keeping this alive, well-maintained, and open source for
Review Board [https://www.reviewboard.org/] and other products.

Where do I go for support?

We have a really old mailing list [http://groups.google.com/group/django-evolution] over at Google Groups, where you can ask
questions. Truthfully, this group is basically empty these days, but you can
still ask there and we’ll answer!

We also provide commercial support. You can reach out to us if you’re using
Django Evolution in production and want the assurance of someone you can reach
24/7 if something goes wrong.

What about bug reports?

You can report bugs on our bug tracker [https://hellosplat.com/s/beanbag/django-evolution/], hosted on Splat [https://www.hellosplat.com/].

When you file a bug, please be as thorough as possible. Ideally, we’d like to
see the contents of your django_project_version and django_evolution
tables before and after the upgrade, along with any evolution files, models,
and error logs.

How do I contribute patches/pull requests?

We’d love to work with you on your contributions to Django Evolution! It’ll
make our lives easier, for sure :)

While we don’t work with pull requests, we do accept patches on
reviews.reviewboard.org [https://reviews.reviewboard.org/], our Review Board [https://www.reviewboard.org/] server. You can get started by
cloning our GitHub repository [https://github.com/beanbaginc/django-evolution], and install RBTools [https://www.reviewboard.org/downloads/rbtools/] (the Review Board command
line tools).

To post new changes from your feature branch for review, run:

$ rbt post

To update an existing review request:

$ rbt post -u

See the RBTools documentation [https://www.reviewboard.org/docs/rbtools/] for more usage info.

Why evolutions and not migrations?

While most new projects would opt for Django’s own migrations, there
are a few advantages to using evolutions:

	Evolutions are faster to apply than migrations when upgrading between
arbitrary versions of the schema.

Migrations are applied one at a time. If you have 10 migrations modifying
one table, then you’ll trigger a table rebuild 10 times, which is slow –
particularly if there’s a lot of data in that table.

Evolutions going through an optimization process before they’re applied,
determining the smallest amount of changes needed. 10 evolutions for a
table will generally only trigger a single table rebuild.

When you fully own the databases you’re upgrading, this may not matter, as
you’re probably applying new migrations as you write them. However, if
you are distributing self-installed web services (such as Review Board [https://www.reviewboard.org/]),
administrators may not upgrade often. Evolutions help keep these large
upgrades from taking forever.

	There’s a wide range of Django support.

If you are still maintaining legacy applications on Django 1.6, it may be
hard to transition to newer versions. By switching to Django Evolution,
there’s a transition path. You can use evolutions for the apps you control
without conflicting with migrations, and begin the upgrade path to modern
versions of Django.

At any time, you can easily switch some or all of your apps from evolutions
to migrations, and Django Evolution will take care of it automatically.

	Django Evolution is easier for some development processes.

During development, you may make numerous changes to your database,
necessitating schema changes that you wouldn’t want to apply in production.
With migrations, you’d need to squash those development-only migration
files, which doesn’t play as well if some beta users have only a subset of
those migrations applied.

Can I switch apps from evolutions to migrations?

Yes, you can! The MoveToDjangoMigrations mutation will
instruct Django Evolution to use migrations instead of evolutions for
any future changes. Before it hands your app off entirely, it will apply any
unapplied evolutions, ensuring a sane starting point for your new migrations.

Can I switch apps from migrations to evolutions?

No, it’s one way for now. We might add this if anyone wants it in the future.
For now, we assume that people using migrations are satisfied with that, and
aren’t looking to move to evolutions.

Why do my syncdb/migrate commands act differently?

Starting in Django Evolution 2.0, the evolve command has
taken over all responsibilities for creating and updating the database,
replacing syncdb and migrate.

For compatibility, those two commands have been replaced, wrapping
evolve instead. Some functionality had to be stripped away
from the original commands, though.

Our syncdb and migrate commands don’t support loading initial_data
fixtures. This feature was deprecated in Django 1.7 and removed in 1.9, and
keeping support between Django versions is tricky. We’ve opted not to include
it (at least for now).

Our migrate command doesn’t support specifying explicit migration names to
apply, or using --fake to pretend migrations were applied.

It’s possible we’ll add compatibility in the future, but only if demand is
strong.

Installing Django Evolution

To install Django Evolution, simply run:

$ pip install django_evolution

You’ll probably want to add that as a package dependency to your project.

Then add django_evolution to your project’s
INSTALLED_APPS [https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-INSTALLED_APPS].

Writing Evolutions

Evolution files describe a set of changes made to an app or its models. These
are Python files that live in the appdir/evolutions/ directory.
The name of the file (minus the .py extension) is called an
evolution label, and can be whatever you want, so long as it’s unique
for the app. These files look something like:

myapp/evolutions/my_evolution.py

from __future__ import unicode_literals

from django_evolution.mutations import AddField

MUTATIONS = [
 AddField('MyModel', 'my_field', models.CharField, max_length=100,
 null=True),
]

Evolution files can make use of any supported App and Model Mutations (classes like
AddField above) to describe the changes made to your app or models.

Once you’ve written an evolution file, you’ll need to place its label in the
app’s appdir/evolutions/__init__.py in a list called SEQUENCE.
This specifies the order in which evolutions should be processed. These look
something like:

myapp/evolutions/__init__.py

from __future__ import unicode_literals

SEQUENCE = [
 'my_evolution',
]

Example

Let’s go through an example, starting with a model.

blogs/models.py

class Author(models.Model):
 name = models.CharField(max_length=50)
 email = models.EmailField()
 date_of_birth = models.DateField()

class Entry(models.Model):
 headline = models.CharField(max_length=255)
 body_text = models.TextField()
 pub_date = models.DateTimeField()
 author = models.ForeignKey(Author)

At this point, we’ll assume that the project has been previously synced to the
database using something like ./manage.py syncdb or ./manage.py migrate
--run-syncdb. We will also assume that it does not make use of
migrations.

Modifying Our Model

Perhaps we decide we don’t actually need the birthdate of the author. It’s
just extra data we’re doing nothing with, and increases the maintenance
burden. Let’s get rid of it.

 class Author(models.Model):
 name = models.CharField(max_length=50)
 email = models.EmailField()
- date_of_birth = models.DateField()

The field is gone, but it’s still in the database. We need to generate an
evolution to get rid of it.

We can get a good idea of what this should look like by running:

$./manage.py evolve --hint

Which gives us:

#----- Evolution for blogs
from __future__ import unicode_literals

from django_evolution.mutations import DeleteField

MUTATIONS = [
 DeleteField('Author', 'date_of_birth'),
]
#----------------------

Trial upgrade successful!

As you can see, we got some output showing us what the evolution file might
look like to delete this field. We’re also told that this worked – this
evolution was enough to update the database based on our changes. If we had
something more complex (like adding a non-null field, requiring some sort of
initial value), then we’d be told we still have changes to make.

Let’s dump this sample file in
blogs/evolutions/remove_date_of_birth.py:

blogs/evolutions/remove_date_of_birth.py

from __future__ import unicode_literals

from django_evolution.mutations import DeleteField

MUTATIONS = [
 DeleteField('Author', 'date_of_birth'),
]

(Alternatively, we could have run ./manage.py evolve -w
remove_date_of_birth, which would create this file for us, but let’s start
off this way.)

Now we need to tell Django Evolution we want this in our evolution sequence:

blogs/evolutions/remove_date_of_birth.py

from __future__ import unicode_literals

SEQUENCE = [
 'remove_date_of_birth',
]

We’re done with the hard work! Time to apply the evolution:

$./manage.py evolve --execute

You have requested a database upgrade. This will alter tables and data
currently in the "default" database, and may result in IRREVERSABLE
DATA LOSS. Upgrades should be *thoroughly* reviewed and tested prior
to execution.

MAKE A BACKUP OF YOUR DATABASE BEFORE YOU CONTINUE!

Are you sure you want to execute the database upgrade?

Type "yes" to continue, or "no" to cancel: yes

This may take a while. Please be patient, and DO NOT cancel the
upgrade!

Applying database evolution for blogs...
The database upgrade was successful!

Tada! Now if you look at the columns for your blogs_author table, you’ll
find that date_of_birth is gone.

You can make changes to your models as often as you need to. Add and delete
the same field a dozen times across dozens of evolutions, if you like.
Evolutions are automatically optimized before applied, resulting in the
smallest set of changes needed to get your database updated.

Adding Dependencies

New in version 2.1.

Both individual evolution modules and the main
myapp/evolutions/__init__.py module can define other evolutions or
migrations that must be applied before or after the individual evolution or
app as a whole.

This is done by adding any of the following to the appropriate module:

	AFTER_EVOLUTIONS:
	A list of specific evolutions (tuples in the form of
(app_label, evolution_label)) or app labels (a single string) that
must be applied before this evolution can be applied.

	BEFORE_EVOLUTIONS:
	A list of specific evolutions (tuples in the form of
(app_label, evolution_label)) or app labels (a single string) that
must be applied sometime after this evolution is applied.

	AFTER_MIGRATIONS:
	A list of migration targets (tuples in the form of
(app_label, migration_name) that must be applied before this evolution
can be applied.

	BEFORE_MIGRATIONS:
	A list of migration targets (tuples in the form of
(app_label, migration_name) that must be applied sometime after this
evolution is applied.

Django Evolution will apply the evolutions and migrations in the right order
based on any dependencies.

This is important to set if you have evolutions that a migration may depend on
(e.g., a swappable model that the migration requires), or if your evolutions
are being applied in the wrong order (often only a problem if there are
evolutions depending on migrations).

Note

It’s up to you to decide where to put these.

You may want to define this as its own empty initial.py evolution
at the beginning of the SEQUENCE list, or to a more specific
evolution within.

So, let’s look at an example:

blogs/evolutions/add_my_field.py

from __future__ import unicode_literals

from django_evolution.mutations import ...

BEFORE_EVOLUTIONS = [
 'blog_exporter',
 ('myapi', 'add_blog_fields'),
]

AFTER_MIGRATIONS = [
 ('fancy_text', '0001_initial'),
]

MUTATIONS = [
 ...
]

This will ensure this evolution is applied before both the blog_exporter
app’s evolutions/models and the myapi app’s add_blog_fields evolution.
At the same time, it’ll also ensure that it will be applied only after the
fancy_text app’s 0001_initial migration has been applied.

Similarly, these can be added to the top-level evolutions/__init__.py file
for an app:

blogs/evolutions/__init__.py

from __future__ import unicode_literals

BEFORE_EVOLUTIONS = [
 'blog_exporter',
 ('myapi', 'add_blog_fields'),
]

AFTER_MIGRATIONS = [
 ('fancy_text', '0001_initial'),
]

SEQUENCE = [
 'add_my_field',
]

This is handy if you need to be sure that this module’s evolutions or model
creations always happen before or after that of another module, no matter
which models may exist or which evolutions may have already been applied.

Hint

Don’t add dependencies if you don’t need to. Django Evolution will try to
apply the ordering in the correct way. Use dependencies when it gets it
wrong.

Make sure you test not only upgrades but the creation of brand-new
databases, to make sure your dependencies are correct in both cases.

MoveToDjangoMigrations

If an evolution uses the
MoveToDjangoMigrations mutation,
dependencies will automatically be created to ensure that your evolution is
applied in the correct order relative to any new migrations in that app.

That means that this:

MUTATIONS = [
 MoveToDjangoMigrations(mark_applied=['0001_initial'])
]

implies:

AFTER_MIGRATIONS = [
 ('myapp', '0001_initial'),
]

App and Model Mutations

Evolutions are composed of one or more mutations, which mutate the state of
the app or models. There are several mutations included with Django Evolution,
which we’ll take a look at here.

Field Mutations

AddField

AddField is used to add new fields to a table. It takes the following
parameters:

	
class AddField(model_name, field_name, field_type, initial=None, **field_attrs)

	
	Parameters:

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model the field was added to.

	field_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the new field.

	field_type (type [https://docs.python.org/3/library/functions.html#type]) – The field class.

	initial – The initial value to set for the field. Each row in the table will have
this value set once the field is added. It’s required if the field is
non-null.

	field_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Attributes to pass to the field constructor. Only those that impact the
schema of the table are considered (for instance, null=... or
max_length=..., but not help_text=....

For example:

from django.db import models
from django_evolution.mutations import AddField

MUTATIONS = [
 AddField('Book', 'publish_date', models.DateTimeField, null=True),
]

ChangeField

ChangeField can make changes to existing fields, altering the attributes
(for instance, increasing the maximum length of a CharField).

Note

This cannot be used to change the field type.

It takes the following parameters:

	
class ChangeField(model_name, field_name, initial=None, **field_attrs)

	
	Parameters:

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model containing the field.

	field_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field to change.

	field_type – The new type of field. This must be a subclass of
Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field].

This will do its best to change one field type to another, but not
all field types can be changed to another type. Some types may be
database-specific.

New in version 2.2.

	initial – The new initial value to set for the field. If the field previously
allowed null values, but null=False is being passed, then this will
update all existing rows in the table to have this initial value.

	field_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The field attributes to change. Only those that impact the schema of
the table are considered (for instance, null=... or
max_length=..., but not help_text=....

For example:

from django.db import models
from django_evolution.mutations import ChangeField

MUTATIONS = [
 ChangeField('Book', 'name', max_length=100, null=False),
]

DeleteField

DeleteField will delete a field from the table, erasing its data from all
rows. It takes the following parameters:

	
class DeleteField(model_name, field_name)

	
	Parameters:

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model containing the field to delete.

	field_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field to delete.

For example:

from django.db import models
from django_evolution.mutations import ChangeField

MUTATIONS = [
 ChangeField('Book', 'name', max_length=100, null=False),
]

RenameField

RenameField will rename a field in the table, preserving all stored data.
It can also set an explicit column name (in case the name is only changing in
the model) or a ManyToManyField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ManyToManyField] table name.

If working with a ManyToManyField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ManyToManyField], then the
parent table won’t actually have a real column backing it. Instead, the
relationships are all maintained using the “through” table created by the
field. In this case, the db_column value will be ignored, but db_table
can be set.

It takes the following parameters:

	
class RenameField(model_name, old_field_name, new_field_name, db_column=None, db_table=None)

	
	Parameters:

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model containing the field to delete.

	old_field_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The old name of the field on the model.

	new_field_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name of the field on the model.

	db_column (str [https://docs.python.org/3/library/stdtypes.html#str]) – The explicit name of the column on the table to use. This may be the
original column name, if the name is only being changed on the model
(which means no database changes may be made).

	db_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The explicit name of the “through” table to use for a
ManyToManyField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ManyToManyField]. If changed, then that
table will be renamed. This is ignored for any other types of fields.

If the table name hasn’t actually changed, then this may not make any
changes to the database.

For example:

from django_evolution.mutations import RenameField

MUTATIONS = [
 RenameField('Book', 'isbn_number', 'isbn', column_name='isbn_number'),
 RenameField('Book', 'critics', 'reviewers',
 db_table='book_critics')
]

Model Mutators

ChangeMeta

ChangeMeta can change certain bits of metadata about a model. For example,
the indexes or unique-together constraints. It takes the following parameters:

	
class ChangeMeta(model_name, prop_name, new_value)

	
	Parameters:

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model containing the field to delete.

	prop_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the property to change, as documented below.

	new_value – The new value for the property.

The properties that can be changed depend on the version of Django. They
include:

	db_table_comment:
	A comment to apply to the table’s schema.

This requires Django 4.2 or higher.

	Version Added:
	2.3

	index_together:
	Groups of fields that should be indexed together in the database.

This is represented by a list of tuples, each of which groups together
multiple field names that should be indexed together in the database.

index_together support requires Django 1.5 or higher. The last
versions of Django Evolution to support Django 1.5 was the 0.7.x series.

	indexes:
	Explicit indexes to create for the model, optionally grouping multiple
fields together and optionally naming the index.

This is represented by a list of dictionaries, each of which contain a
fields key and an optional name key. Both of these correspond to
the matching fields in Django’s Index [https://docs.djangoproject.com/en/3.1/ref/models/indexes/#django.db.models.Index] class.

indexes support requires Django 1.11 or higher.

	unique_together:
	Groups of fields that together form a unique constraint. Rows in the
database cannot repeat the same values for those groups of fields.

This is represented by a list of tuples, each of which groups together
multiple field names that should be unique together in the database.

unique_together support is available in all supported versions of
Django.

For example:

from django_evolution.mutations import ChangeMeta

MUTATIONS = [
 ChangeMeta('Book', 'index_together', [('name', 'author')]),
]

Changed in version 2.0: Added support for indexes.

DeleteModel

DeleteModel removes a model from the database. It will also remove any
“through” models for any of its ManyToManyFields [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ManyToManyField]. It takes the following parameters:

	
class DeleteModel(model_name)

	
	Parameters:

	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model to delete.

For example:

from django_evolution.mutations import DeleteModel

MUTATIONS = [
 DeleteModel('Book'),
]

RenameModel

RenameModel will rename a model and update all relations pointing to that
model. It requires an explicit underlying table name, which can be set to the
original table name if only the Python-side model name is changing. It takes
the following parameters:

	
class RenameModel(old_model_name, new_model_name, db_table)

	
	Parameters:

	
	old_model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The old name of the model.

	new_model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name of the model.

	db_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The explicit name of the underlying table.

For example:

from django_evolution.mutations import RenameModel

MUTATIONS = [
 RenameModel('Critic', 'Reviewer', db_table='books_reviewer'),
]

App Mutators

DeleteApplication

DeleteApplication will remove all the models for an app from the database,
erasing all associated data. This mutation takes no parameters.

Note

Make sure that any relation fields from other models to this app’s models
have been removed before deleting an app.

In many cases, you may just want to remove the app from your project’s
INSTALLED_APPS [https://docs.djangoproject.com/en/3.1/ref/settings/#std:setting-INSTALLED_APPS], and leave the data alone.

For example:

from django_evolution.mutations import DeleteApplication

MUTATIONS = [
 DeleteApplication(),
]

MoveToDjangoMigrations

MoveToDjangoMigrations will tell Django Evolution that any future changes
to the app or its models should be handled by Django’s migrations
instead evolutions. Any unapplied evolutions will be applied before applying
any migrations.

This is a one-way operation. Once an app moves from evolutions to migrations,
it cannot move back.

Since an app may have had both evolutions and migrations defined in the tree
(in order to work with both systems), this takes a mark_applied= parameter
that lists the migrations that should be considered applied by the time this
mutation is run. Those migrations will be recorded as applied and skipped.

	
class MoveToDjangoMigrations(mark_applied=['0001_initial'])

	
	Parameters:

	mark_applied (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of migrations that should be considered applied when running
this mutation. This defaults to the 0001_initial migration.

For example:

from django_evolution.mutations import MoveToDjangoMigrations

MUTATIONS = [
 MoveToDjangoMigrations(mark_applied=['0001_initial',
 '0002_book_add_isbn']),
]

New in version 2.0.

RenameAppLabel

RenameAppLabel will rename the stored app label for the app, updating
all references made in other models. It won’t change indexes or any database
state, however.

Django 1.7 moved to an improved concept of app labels that could be customized
and were guaranteed to be unique within a project (we’ll call these
modern app labels). Django 1.6 and earlier generated app labels based
on the app’s module name (legacy app labels).

Because of this, older stored project signatures may have grouped
together models from two different apps (both with the same app labels)
together. Django Evolution will try to untangle this, but in complicated
cases, you may need to supply a list of model names for the app (current and
possibly older ones that have been removed). Whether you need to do this is
entirely dependent on the structure of your project. Test it in your upgrades.

This takes the following parameters:

	
class RenameAppLabel(old_app_label, new_app_label, legacy_app_label=None, model_names=None)

	
	Parameters:

	
	old_app_label (str [https://docs.python.org/3/library/stdtypes.html#str]) – The old app label that’s being renamed.

	new_app_label (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new modern app label to rename to.

	legacy_app_label (str [https://docs.python.org/3/library/stdtypes.html#str]) – The legacy app label for the new app name. This provides compatibility
with older versions of Django and helps with transition apps and
models.

	model_names (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of model names to move out of the old signature and into the
new one.

For example:

from django_evolution.mutations import RenameAppLabel

MUTATIONS = [
 RenameAppLabel('admin', 'my_admin', legacy_app_label='admin',
 model_names=['Report', 'Config']),
]

New in version 2.0.

Other Mutators

SQLMutation

SQLMutation is an advanced mutation used to make arbitrary changes to a
database and to the stored project signature. It may be used to make changes
that cannot be made by other mutators, such as altering tables not managed by
Django, changing a table engine, making metadata changes to the table or
database, or modifying the content of rows.

SQL from this mutation cannot be optimized alongside other mutations.

This takes the following parameters:

	
class SQLMutation(tag, sql, update_func=None)

	
	Parameters:

	
	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – A unique identifier for this SQL mutation within the app.

	sql (list/str) – A list of SQL statements, or a single SQL statement as a string, to
execute. Note that this will be database-dependent.

	update_func (callable) – A function to call to perform additional operations or update the
project signature.

Note

There’s some caveats with providing an update_func.

Django Evolution 2.0 introduced a new form for this function that takes in
a django_evolution.mutations.Simulation object, which can be
used to access and modify the stored project signature. This is
safe to use (well, relatively – try not to blow anything up).

Prior versions supported a function that took two arguments: The app label
of the app that’s being evolved, and a serialized dictionary representing
the project signature.

If using the legacy style, it’s possible that you can mess up the
signature data, since we have to serialize to an older version of the
signature and then load from that. Older versions of the signature don’t
support all the data that newer versions do, so how well this works is
really determined by the types of evolutions that are going to be run.

We strongly recommend updating any SQLMutation calls to use the
new-style function format, for safety and future compatibility.

For example:

from django_evolution.mutations import SQLMutation

def _update_signature(simulation):
 pass

MUTATIONS = [
 SQLMutation('set_innodb_engine',
 'ALTER TABLE my_table ENGINE = MYISAM;',
 update_func=_update_signature),
]

Changed in version 2.0: Added the new-style update_func.

Management Commands

	evolution-project-sig

	evolve

	list-evolutions

	mark-evolution-applied

	wipe-evolution

evolution-project-sig

The evolution-project-sig command is used to list, show, and delete
stored project signatures.

This is really only useful if you’re working to recover from a bad state where
you’ve undone the changes made by an evolution and need to re-apply it. It
should never be used under normal use, especially on a production database.

By default, this command will confirm before making any changes to the
database. You can use --noinput to avoid the confirmation step.

Example

To list project signatures:

$./manage.py evolution-project-sig --list

To show the latest project signature:

$./manage.py evolution-project-sig --show

To show a specific project signature:

$./manage.py evolution-project-sig --show --id <ID>

To delete a project signature:

$./manage.py evolution-project-sig --delete --id <ID>

Arguments

	
---delete

	Delete a project signature.

	
--list

	List project signatures and their associated evolutions.

	
--show

	Show the current project signature, or an older one if using
--id.

	
--id

	Specify the ID of a project signature.

	
--noinput

	Delete without prompting for confirmation.

evolve

The evolve command is responsible for setting up databases and
applying any evolutions or migrations.

This is a replacement for both the syncdb and migrate
commands in Django. Running either of this will wrap evolve (though
not all of the command’s arguments will be supported when Django Evolution is
enabled).

Creating/Updating Databases

To construct a new database or apply updates, you will generally just run:

$./manage.py evolve --execute

This is the most common usage for evolve. It will create any
missing models and apply any unapplied evolutions or migrations.

Changed in version 2.0: evolve now replaces both syncdb and
migrate. In previous versions, it had to be run after
syncdb.

Generating Hinted Evolutions

When making changes to a model, it helps to see how the evolution should look
before writing it. Sometimes the evolution will be usable as-is, but sometimes
you’ll need to tweak it first.

To generate a hinted evolution, run:

$./manage.py evolve --hint

Hinted evolutions can be automatically written by using --write,
saving you a little bit of work:

$./manage.py evolve --hint --write my_new_evolution

This will take any app with a hinted evolution and write a
appdir/evolutions/my_new_evolution.py file. You will still need to
add your new evolution to the SEQUENCE list in
appdir/evolutions/__init__.py.

If you only want to write hints for a specific app, pass the app labels on the
command line, like so:

$./manage.py evolve --hint --write my_new_evolution my_app

Arguments

	
<APP_LABEL...>

	Zero or more specific app labels to evolve. If provided, only these apps
will have evolutions or migrations applied. If not provided, all
apps will be considered for evolution.

	
--database <DATABASE>

	The name of the configured database to perform the evolution against.

	
--hint

	Display sample evolutions that fulfill any database changes for apps and
models managed by evolutions. This won’t include any apps or models
managed by migrations.

	
--noinput

	Perform evolutions automatically without any input.

	
--purge

	Remove information on any non-existent applications from the stored
project signature. This won’t remove the models themselves. For that,
see DeleteModel or DeleteApplication.

	
--sql

	Display the generated SQL that would be run if applying evolutions.
This won’t include any apps or models managed by migrations.

	
-w <EVOLUTION_NAME>, --write <EVOLUTION_NAME>

	Write any hinted evolutions to a file named
appdir/evolutions/EVOLUTION_NAME. This will not include the
evolution in appdir/evolutions/__init__.py.

	
-x, --execute

	Execute the evolution process, applying any evolutions and
migrations to the database.

Warning

This can be used in combination with --hint to apply hinted
evolutions, but this is generally a bad idea, as the execution is
not properly repeatable or trackable.

list-evolutions

The list-evolutions command lists all the evolutions that have so
far been applied to the database. It can be useful for debugging, or
determining if a specific evolution has yet been applied.

Example

$./manage.py list-evolutions my_app
Applied evolutions for 'my_app':
 add_special_fields
 update_app_label
 change_name_max_length

Arguments

	
<APP_LABEL...>

	Zero or more specific app labels to list. If provided, only evolutions on
these apps will be shown.

mark-evolution-applied

The mark-evolution-applied command is used to mark evolutions as
already applied in the database.

This is really only useful if you’re working to recover from a bad state where
you’ve undone the changes made by an evolution and need to re-apply it. It
should never be used under normal use, especially on a production database.

By default, this command will confirm before marking the evolution as applied.
You can use --noinput to avoid the confirmation step.

Example

$./manage.py mark-evolution-applied --app-label my_app \
 change_name_max_length

Arguments

	
EVOLUTION_LABEL ...

	One or more specific evolution labels to mark as applied. This is required
if --all isn’t specified.

	
--all

	Mark all unapplied evolutions as applied.

	
--app-label <APP_LABEL>

	An app label the evolutions apply to.

	
--noinput

	Mark as applied without prompting for confirmation.

wipe-evolution

The wipe-evolution command is used to remove evolutions from the
list of applied evolutions.

This is really only useful if you’re working to recover from a bad state where
you’ve undone the changes made by an evolution and need to re-apply it. It
should never be used under normal use, especially on a production database.

By default, this command will confirm before wiping the evolution from the
history. You can use --noinput to avoid the confirmation step.

To see the list of evolutions that can be wiped, run
list-evolutions.

Example

$./manage.py wipe-evolution --app-label my_app change_name_max_length

Arguments

	
EVOLUTION_LABEL ...

	One or more specific evolution labels to remove from the database. If the
same evolution names exist for multiple apps, they’ll all be removed. To
isolate them to a specific app, use --app-label.

	
--app-label <APP_LABEL>

	An app label to limit evolution labels to. Only evolutions on this app will
be wiped.

	
--noinput

	Perform the wiping procedure automatically without any input.

Glossary

	evolution label
	The name of a particular evolution for an app. These must be unique
within an app, but do not have to be unique within a project.

	legacy app label
	legacy app labels
	The form of app label used in Django 1.6 and earlier. Legacy app labels
are generated solely from the app’s module name.

	migrations
	Django 1.7+’s built-in method of managing changes to the database
schema. See the migrations documentation [https://docs.djangoproject.com/en/3.1/topics/migrations/].

	modern app label
	modern app labels
	The form of app label used in Django 1.7 and later. Modern app labels
default to being generated from the app’s module name, but can be
customized.

	project signature
	project signatures
	A stored representation of all the apps and models in your project.
This is stored in the django_project_version table, and is a
critical part in determining how the database has evolved and what
changes need to be made.

In Django Evolution 2.0 and higher, this is stored as JSON data. In
prior versions, this was stored as Pickle protocol 0 data.

Release Notes

2.x Releases

	Django Evolution 2.3

	Django Evolution 2.2

	Django Evolution 2.1.4

	Django Evolution 2.1.3

	Django Evolution 2.1.2

	Django Evolution 2.1.1

	Django Evolution 2.1

	Django Evolution 2.0

0.7 Releases

	Django Evolution 0.7.8

	Django Evolution 0.7.7

	Django Evolution 0.7.6

	Django Evolution 0.7.5

	Django Evolution 0.7.4

	Django Evolution 0.7.3

	Django Evolution 0.7.2

	Django Evolution 0.7.1

	Django Evolution 0.7

	Django Evolution 0.7 Beta 1

0.6 Releases

	Django Evolution 0.6.9

	Django Evolution 0.6.8

	Django Evolution 0.6.7

	Django Evolution 0.6.6

	Django Evolution 0.6.5

	Django Evolution 0.6.4

	Django Evolution 0.6.3

	Django Evolution 0.6.2

	Django Evolution 0.6.1

	Django Evolution 0.6

0.5 Releases

	Django Evolution 0.5.1

	Django Evolution 0.5

Django Evolution 2.3

Release date: October 15, 2023

Installation

Django Evolution 2.3 is compatible with Django [https://www.djangoproject.com/] 1.6-4.2, and Python 2.7 and
3.6-3.12.

To install Django Evolution 2.3, run:

$ pip3 install django_evolution==2.3

To learn more, see:

	Documentation [https://django-evolution.readthedocs.io/en/latest/]

	Django Evolution on PyPI [https://pypi.org/project/django-evolution/]

	Django Evolution on GitHub [https://github.com/beanbaginc/django-evolution/]

New Features

	Added support for Python 3.12 and Django 4.2.

	Added support for evolving table comments on Django 4.2.

This is done through ChangeMeta.

	Added advanced management commands for working with project signatures and
marking evolutions as applied.

mark-evolution-applied will mark one or more evolutions as
applied to your database, without modifying any schema.

evolution-project-sig will let you list project signatures,
show a stored project signature, or delete project signatures.

These are advanced and dangerous commands. They should only be run if you
know what you’re doing, as part of diagnosing and fixing a failed database
upgrade.

	Added debug logging for the evolution process.

If Python’s logging is set up to enable debug output, then the evolution
process will provide information on the new models generation, mutations,
and evolutions begin run. This can aid in debugging efforts.

Contributors

	Christian Hammond

	David Trowbridge

Django Evolution 2.2

Release date: October 3, 2022

New Features

	Added support for Django 3.2 through 4.1.

This includes full support for django.db.models.Index [https://docs.djangoproject.com/en/3.1/ref/models/indexes/#django.db.models.Index], and
compatibility with database backend changes made in these versions.

	Added support for changing a field’s type in ChangeField.

This can be done by passing in the new field class to field_type=....

	Added a new settings.DJANGO_EVOLUTION setting.

This is in the form of:

DJANGO_EVOLUTION = {
 'CUSTOM_EVOLUTIONS': {
 '<app_label>': ['<evolution_module>', ...],
 },
 'ENABLED': <bool>,
}

This replaces settings.CUSTOM_EVOLUTIONS and
settings.DJANGO_EVOLUTION_ENABLED, both of which are now deprecated
and will emit deprecation warnings.

Bug Fixes

General

	Fixed generating SQL to execute while in a transaction on Django 2.0+.

Indexes/Constraints

	Fixed ordering issues when dropping and re-creating indexes when changing
db_index and unique states.

	Fixed deferring constraints and indexes when injecting new models into the
database.

The constraints and indexes were being added too soon, which could cause
problems when applying more complicated batches of evolution.

	Fixed issues with setting non-string initial data from a callable.

	Fixed attempting to temporarily remove indexes and constraints that
reference models not yet injected into the database.

	Fixed edge cases with the tracking of standard vs. unique indexes in
database state on Django 1.6.

MySQL

	Fixed bad attempts at applying defaults to certain field types.

Django Evolution will no longer apply a default on text, blob,
json, and all short/medium/long variations of those.

Python Compatibiltiy

	Fixed an unintended deprecation warning with the collections [https://docs.python.org/3/library/collections.html#module-collections]
module when running on Python 3.10.

Contributors

	Christian Hammond

	David Trowbridge

Django Evolution 2.1.4

Release date: February 28, 2022

Bug Fixes

	Fixed a crash when applying Django compatibility patches on Django < 2.0
when mysqlclient [https://pypi.org/project/mysqlclient/] isn’t installed.

Contributors

	Christian Hammond

	David Trowbridge

Django Evolution 2.1.3

Release date: January 25, 2022

Compatibility Changes

	Patched compatibility between modern versions of mysqlclient [https://pypi.org/project/mysqlclient/]
and Django <= 1.11.

Django, up through 1.11, attempted to access a bytes key in an internal
mapping on the database connection handle supplied by mysqlclient [https://pypi.org/project/mysqlclient/].
This wasn’t intended to be present, and was due to a Python 2/3
compatibility issue.

They worked around this for a while, but dropped that support in the recent
2.1 release. To maintain compatibility, Django Evolution now patches
Django’s own copy of the mapping table to restore the right behavior.

	Patched Python 3.10+’s collections [https://docs.python.org/3/library/collections.html#module-collections] module to include legacy
imports when using Django 2.0 or older.

Django 2.0 and older made use of some imports that no longer exist on
Python 3.10. Django Evolution will now bring back this support when
running this combination of versions of Django.

Bug Fixes

	During upgrade, evolutions are no longer applied to newly-added models.

	Fixed comparison issues between unique_together state from very old
databases and newer evolutions.

This could lead to issues applying evolutions that only supply a
unique_together baseline, or that differ in terms of using tuples or
lists.

	Fixed an edge case where the django_evolution app could be loaded
too early when setting up a new database, causing crashes.

	Updated to avoid using some deprecated Python and Django functionality.

We had some imports and function calls that were emitting deprecation
warnings, depending on the versions of Python and Django. Code has been
update to use modern imports and calls where possible,

Contributors

	Christian Hammond

	David Trowbridge

Django Evolution 2.1.2

Release date: January 19, 2021

Bug Fixes

	Fixed a regression with adding new non-NULL columns on SQLite databases.

	Fixed a possible data loss bug when changing NULL columns to non-NULL on
SQLite databases.

Contributors

	Christian Hammond

Django Evolution 2.1.1

Release date: January 17, 2021

Bug Fixes

	Fixed changing a DecimalField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.DecimalField]’s
decimal_places and max_digits attributes.

	Changed the “No upgrade required” text to “No database upgrade required.”

While not a bug, this does help avoid confusion when running as part of a
project’s upgrade process, when database changes aren’t the only changes
being made.

Contributors

	Christian Hammond

Django Evolution 2.1

Release date: November 16, 2020

New Features

	Dependency management for evolutions and migrations.

Evolutions can now specify other evolutions and migrations that must be
applied either before or after. This allows evolutions to, for instance,
introduce a model that would be required by another migration (useful for
Django apps that have migrations that depend on a swappable model specified
in settings).

Django Evolution will determine the correct order in which to apply
migrations and evolutions, so as to correctly create or update the database.

Dependencies can be defined per-evolution or per-app. They can depend on
specific evolutions or on app evolutions for an app, or on specific
migrations.

See Adding Dependencies for more information.

	Improved transaction management.

Transactions are managed a bit more closely now, allowing more operations to
be performed in a transaction at a time and for those operations to be
rolled back if anything goes wrong. This should improve reliability of an
upgrade.

Bug Fixes

General

	Fixed the order in which models are created.

There was a regression in 2.0 where models could be created in the wrong
order, causing issues with applying constraints between those models.

	Fixed error messages in places if stored schema signatures were missing.

Previously, some missing schema signatures could lead to outright crashes,
if things went wrong. There’s now checks in more places to ensure there’s
at least a reasonable error message.

MySQL/MariaDB

	Fixed preserving the db_index= values for fields on Django 1.8 through
1.10.

These versions of Django “temporarily” unset the db_index attribute on
fields when generating SQL for creating indexes, and then never restore it.
We now monkey-patch these versions of Django to restore these values.

Contributors

	Christian Hammond

Django Evolution 2.0

Release date: August 13, 2020

New Features

All-New Documentation

We have new documentation [https://django-evolution.readthedocs.io/en/latest/] for Django Evolution, covering installation,
usage, a FAQ, and all release notes.

Support for Python 3

Django Evolution is now fully compatible with Python 2.7 and 3.5 through 3.8,
allowing it to work across all supported versions of Django.

Speaking of that…

Support for Django 1.6 through 3.1

Django Evolution 2.0 supports Django 1.6 through 3.1. Going forward, it will
continue to support newer versions of Django as they come out.

This includes modern features, like Meta.indexes [https://docs.djangoproject.com/en/3.1/ref/models/options/#django.db.models.Options.indexes] and Meta.conditions [https://docs.djangoproject.com/en/3.1/ref/models/options/#django.db.models.Options.constraints].

We can offer this due to the new cooperative support for Django’s schema
migrations.

Compatibility with Django Migrations

Historically, Django Evolution has been a standalone schema migration
framework, and was stuck with supporting versions of Django prior to 1.7,
since evolutions and migrations could not co-exist.

That’s been resolved. Django Evolution now controls the entire process,
applying both migrations and evolutions together, ensuring a smooth upgrade.
Projects get the best of both worlds:

	The ability to use apps that use migrations (most everything, including
Django itself)

	Optimized upgrades for the project’s own evolution-based models (especially
when applying large numbers of evolutions to the same table)

New Evolve Command

In Django Evolution 2.0, the evolve command becomes the sole way of
applying both evolutions and migrations, replacing the migrate/syncdb
commands.

To set up or upgrade a database (using both evolutions and migrations), you’ll
simply run evolve --execute. This will work across all versions of Django.

The old migrate and syncdb commands will still technically work, but
they’ll wrap evolve --execute.

This can all be disabled by setting DJANGO_EVOLUTION_ENABLED = False in
settings.py.

Note

initial_data fixtures will no longer be loaded. These have already
been deprecated in Django, but it’s worth mentioning for users of older
versions of Django.

Also, the migrate command will no longer allow individual migrations
to be applied.

Moving Apps to Migrations

Projects can transition some or all of their apps to migrations once the
last of the evolutions are applied, allowing them to move entirely onto
migrations if needed. This is done with the new
MoveToMigrations mutation.

Simply add one last evolution for an app:

from django_evolution.mutations import MoveToDjangoMigrations

 MUTATIONS = [
 MoveToDjangoMigrations(),
]

This will apply after the last evolution is applied, and from then on all
changes to the models will be controlled via migrations.

Note

Once an app has been moved to migrations, it cannot be moved back to
evolutions.

Improved Database Compatibility

	Support for constraints on modern versions of MySQL/MariaDB.

Modern versions of MySQL and MariaDB are now explicitly supported, allowing
projects using Django 2.2+ to take advantage of CHECK constraints. This
requires MySQL 8.0.16+ or MariaDB 10.2.1+ on Django 3.0+.

	Faster and safer SQLite table rebuilds.

Changes to SQLite databases are now optimized, resulting in far fewer table
rebuilds when changes are made to a model.

	Support for SQLite 3.25+ column renaming.

SQLite 3.25 introduced ALTER TABLE ... RENAME COLUMN syntax, which
is faster than a table rebuild and avoids a lot of issues with preserving
column references.

	We use Django 1.7’s schema rewriting for more of the SQL generation.

This helps ensure future compatibility with new releases of Django, and
allows for leveraging more of Django’s work toward database compatibility.

Project-Defined Custom Evolutions

Projects can provide a new settings.CUSTOM_EVOLUTIONS setting to define
custom evolution modules for apps that don’t otherwise make use of evolutions
or migrations. The value is a mapping of app module names (same ones you’d
see in settings.INSTALLED_APPS to an evolutions module path.

This looks like:

CUSTOM_EVOLUTIONS = {
 'other_project.contrib.foo': 'my_project.compat.foo.evolutions',
}

Evolver API

The entire evolution/migration process can now be controlled programmatically
through the Evolver class. This allows
an entire database, or just select apps, to be evolved without calling out to
a management command.

While most projects will not have a need for this, it’s available to those
that might want some form of specialized control over the evolution process
(for automation, selectively evolving models from an extension/plug-in, or
providing an alternative management/upgrade experience).

During an evolution, new signals are emitted, allowing apps to hook into the
process and perform any updates they might need:

	evolved

	evolving

	evolving_failed

	applying_evolution

	applied_evolution

	applying_migration

	applied_migration

	created_models

	creating_models

New Database Signature Format

Django Evolution stores a representation of the database in the
Version table, in order to track what’s
been applied and what changes have been made since.

Historically, this has used some older structured data schema serialized in
Pickle Protocol 0 format. As of Django Evolution 2.0, it’s now using a new
schema stored in JSON format, which is designed for future extensibility.

Internally, this is represented by a set of classes with a solid API that’s independent of the
storage format. This eases the addition of new features, and makes it easier
to diagnose problems or write custom tools.

Warning

This will impact any SQLMutations that modify a signature. These
will need to be updated to use the new classes, instead of modifying the
older schema dictionaries.

Bug Fixes

SQLite

	Fixed constraint references from other tables when renaming primary key
columns.

	Fixed restoring all table indexes after rebuilding a table.

Contributors

	Christian Hammond

Django Evolution 0.7.8

Release date: June 14, 2018

Packaging

	Eggs and wheels are now built only for Python 2.7.

Older versions of Python are no longer packaged. Source tarballs may work,
but we recommend that anyone still on older versions of Python upgrade at
their earliest convenience.

Bug Fixes

	Fixed an issue generating unique_together constraints on Postgres
in some configurations.

Depending on the table/index names, unique_together constraints could
fail to generate on Posrgres, since the names weren’t being escaped.

Contributors

	Christian Hammond

Django Evolution 0.7.7

Release date: May 25, 2017

New Features

	Added a note about backing up the database and not cancelling before
executing an evolution.

The confirmation prompt for executing an evolution now suggests backing up
the database first. This is only shown in interactive mode.

After the user has confirmed, they’re told it may take time and to not
cancel the upgrade.

	Added more output when performing evolutions for apps.

When evolving the database, a message is now outputted to the console for
each app being evolved. This gives a sense of progress for larger
evolutions.

If the evolution fails, an error message will be shown listing the app that
failed evolution, the specific SQL statement that failed, and the database
error. This can help when diagnosing and recovering from the problem.

	Added an option for writing hinted evolution files.

There’s now an evolve -w/--write option
that can be used with evolve --hint that writes the hinted
evolution to the appropriate directories in the tree. This takes the name
that should be used for the evolution file.

This will not update the evolutions/__init__.py file.

Bug Fixes

	Fixed issues with evolution optimizations when renaming models.

Django Evolution’s evolution optimization code had issues when applying a
series of evolutions that add a ForeignKey [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey]
field to a newly-introduced model that is then renamed in the same batch.
The resulting field would still point to the original model, resulting in a
KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

Contributors

	Christian Hammond

Django Evolution 0.7.6

Release date: December 1, 2015

Bug Fixes

	Fixed a false positive with schema errors when applying evolutions on MySQL.

When applying new evolutions along with baseline schemas for new models, two
version history entries are created, one for the new baselines, and one for
the new, final schema. On MySQL, this can happen so quickly that they’ll end
up with the same timestamp (as there isn’t a lot of precision in these
fields).

Due to internal sort orders, the next evolution then finds the version entry
for the baseline schema, and not the final evolved schema, causing it to
fail saying that there are changes that couldn’t be applied.

This fixes this problem by improving the sorting order.

	Fixed issues evolving certain changes from old database schemas.

Old database schemas didn’t track certain information, like the
index_together information. The code was previously assuming the
existence of this information and failing if it wasn’t there. Evolving from
these older schemas now works.

Contributors

	Barret Rennie

	Christian Hammond

Django Evolution 0.7.5

Release date: April 13, 2015

Bug Fixes

	Mutations on fields with the same name across different models no longer
results in conflicts.

With the new optimizer in Django Evolution 0.7, it was possible for mutations to be
incorrectly optimized out if, for example, a field was added in one model
and then later changed in another model, if both fields had the same name.
This was due to the way in which we mapped mutations, and would result in an
error in the validation stage before attempting any database modifications.
There are no longer any conflicts between same-named field.

	Indexes are no longer created/deleted unnecessarily.

If setting an index for a field, and it already exists in the database,
there’s no longer an attempt at creating it. Likewise, there’s no longer an
attempt at deleting an index that does not exist.

Contributors

	Christian Hammond

Django Evolution 0.7.4

Release date: September 15, 2014

New Features

	Add a RenameModel mutation for handling model renames.

The new RenameModel mutation allows an evolution to
indicate that a model has been renamed. This handles updating the signature
for any related ForeignKey [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey] or
ManyToManyField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ManyToManyField] fields and generating any SQL
to perform the table rename (if needed).

Contributors

	Christian Hammond

Django Evolution 0.7.3

Release date: July 24, 2014

Bug Fixes

	Fixed issues evolving unique_together attributes on models.

When adding unique_together constraints and then changing them within a
single evolve operation, any constraints listed more than once would result
in unnecessary duplicate SQL statements. These would cause errors that would
prevent the transaction from completing.

	Adding and removing a unique_together constraint within an evolve
operation no longer breaks on PostgreSQL.

	Errors importing a database backend on a modern Django no longer results in
unrelated errors about settings.DATABASE_ENGINE.

Contributors

	Christian Hammond

Django Evolution 0.7.2

Release date: June 2, 2014

Bug Fixes

	Fixed a crash from no-op column renames on PostgreSQL.

When attempting to rename a column on PostgreSQL and specifying a “new” name
that was the same as the old name, the result would be a crash. This is
similar to the bug fixed in Django Evolution 0.7.1.

Contributors

	Christian Hammond

Django Evolution 0.7.1

Release date: May 21, 2014

New Features

	Fixed a crash from no-op column renames on MySQL.

When attempting to rename a column on MySQL and specifying a
“new” name that was the same as the old name, the result would
be a crash. Likewise, there were crashes when renaming a
ManyToManyField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ManyToManyField].

Contributors

	Christian Hammond

Django Evolution 0.7

Release date: February 3, 2014

Packaging

	Fixed the unit tests module being accidentally bundled with the package.
(Bug #134)

	Fixed the missing NEWS file in the releases. (Bug #130)

Compatibility Changes

	Added compatibility with Django 1.5 and 1.6 (Bug #136).

	Dropped compatibility for versions of Django prior to 1.4.10.

New Features

	Added better support for dealing with indexes in the database.

Django changed how index names were generated over time, leading to issues
when evolving old databases. We now scan the database prior to evolution,
gather the indexes, and look them up based on field data dynamically,
guaranteeing we find the correct index.

It’s also more resilient now when using custom indexes placed by an
administrator.

	Added support for evolving unique_together and index_together
fields.

unique_together was previously stored, but ignored, meaning that changes
to a unique_together would not ever apply to an existing database.

index_together, on the other hand, is new in Django 1.5, and was never
even stored.

There’s now a ChangeMeta mutation that allows for changing
unique_together and index_together.

Models making use of unique_together or index_together will have to
supply evolutions defining the current, correct values. These will appear
when running evolve --hint.

	Optimized the SQL before altering the database.

Mutations are now pre-processed and their output post-processed in order to
reduce the number of table-altering mutations. This should massively reduce
the amount of time it takes to update a database, particularly when there
are multiple AddField, ChangeField, or
DeleteField mutations on a single table.

This is the biggest change in this release, and while it’s been tested on
some large sets of mutations, there may be regressions. Please report any
issues you find.

Custom field mutation classes will need to be updated to work with these
changes.

Bug Fixes

	Fixed a number of issues with constraints on different databases. (Bug #127)

	Fixed an invalid variable reference when loading SQL evolution files.
(Bug #121)

	SQL evolution files no longer break if there are blank lines. (Bug #111)

	Booleans are now normalized correctly when saving in the database. (Bug #125)

Previously, invalid boolean values would be used, causing what should have
been a “false” value to be “true”.

Usage

	The evolve command no longer recommends running evolve --hint --execute,
which can easily cause unwanted problems.

Testing

	Added easier unit testing for multiple database types.

The ./tests/runtests.py script now takes a database type as an argument.
The tests will be run against that type of database.

To make use of this, copy test_db_settings.py.tmpl to
test_db_settings.py and fill in the necessary data.

	Fixed all the known unit test failures.

	Rewrote the test suite for better reporting and maintainability.

Contributors

	Christian Hammond

Django Evolution 0.7 Beta 1

Release date: January 14, 2014

Packaging

	Fixed the unit tests module being accidentally bundled with the package.
(Bug #134)

	Fixed the missing NEWS file in the releases. (Bug #130)

Compatibility Changes

	Added compatibility with Django 1.5 (Bug #136).

	Dropped compatibility for versions of Django prior to 1.4.10.

New Features

	Added better support for dealing with indexes in the database.

Django changed how index names were generated over time, leading to issues
when evolving old databases. We now scan the database prior to evolution,
gather the indexes, and look them up based on field data dynamically,
guaranteeing we find the correct index.

It’s also more resilient now when using custom indexes placed by an
administrator.

	Added support for evolving unique_together and index_together
fields.

unique_together was previously stored, but ignored, meaning that changes
to a unique_together would not ever apply to an existing database.

index_together, on the other hand, is new in Django 1.5, and was never
even stored.

There’s now a ChangeMeta mutation that allows for changing
unique_together and index_together.

Models making use of unique_together or index_together will have to
supply evolutions defining the current, correct values. These will appear
when running evolve --hint.

	Optimized the SQL before altering the database.

Mutations are now pre-processed and their output post-processed in order to
reduce the number of table-altering mutations. This should massively reduce
the amount of time it takes to update a database, particularly when there
are multiple AddField, ChangeField, or
DeleteField mutations on a single table.

This is the biggest change in this release, and while it’s been tested on
some large sets of mutations, there may be regressions. Please report any
issues you find.

Custom field mutation classes will need to be updated to work with these
changes.

Bug Fixes

	Fixed a number of issues with constraints on different databases. (Bug #127)

	Fixed an invalid variable reference when loading SQL evolution files.
(Bug #121)

	SQL evolution files no longer break if there are blank lines. (Bug #111)

	Booleans are now normalized correctly when saving in the database. (Bug #125)

Previously, invalid boolean values would be used, causing what should have
been a “false” value to be “true”.

Usage

	The evolve command no longer recommends running evolve --hint --execute,
which can easily cause unwanted problems.

Testing

	Added easier unit testing for multiple database types.

The ./tests/runtests.py script now takes a database type as an argument.
The tests will be run against that type of database.

To make use of this, copy test_db_settings.py.tmpl to
test_db_settings.py and fill in the necessary data.

	Fixed all the known unit test failures.

	Rewrote the test suite for better reporting and maintainability.

Contributors

	Christian Hammond

Django Evolution 0.6.9

Release date: March 13, 2013

Bug Fixes

	Django Evolution no longer applies upgrades that match the current state.

When upgrading an old database, where a new model has been introduced and
evolutions were added on that model, Django Evolution would try to apply the
mutations after creating that baseline, resulting in confusing errors.

Now we only apply mutations for parts of the database that differ between the
last stored signature and the new signature. It should fix a number of
problems people have hit when upgrading extremely old databases.

Contributors

	Christian Hammond

Django Evolution 0.6.8

Release date: February 8, 2013

New Features

	Added two new management commands: list-evolutions and
wipe-evolution.

list-evolutions lists all applied evolutions. It can take one
or more app labels, and will restrict the output to those apps.

wipe-evolution will wipe one or more evolutions from the
database. This should only be used if absolutely necessary, and can cause
problems. It is useful if there’s some previously applied evolutions getting
in the way, which can happen if a person is uncareful with downgrading and
upgrading again.

Contributors

	Christian Hammond

Django Evolution 0.6.7

Release date: April 12, 2012

Bug Fixes

	Don’t fail when an app doesn’t contain any models.

Installing a baseline for apps without models was failing. The code to
install a baseline evolution assumed that all installed apps would have
models defined, but this wasn’t always true. We now handle this case and
just skip over such apps.

Contributors

	Christian Hammond

Django Evolution 0.6.6

Release date: April 1, 2012

New Features

	Generate more accurate sample evolutions.

The sample evolutions generated with evolve --hint should now
properly take into account import paths for third-party database modules.
Prior to this, such an evolution had to be modified by hand to work.

	Generate PEP-8-compliant sample evolutions.

The evolutions are now generated according to the standards of PEP-8. This
mainly influences blank lines around imports and the grouping of imports.

	Support Django 1.4’s timezone awareness in the
Version model.

The Version model was generating
runtime warnings when creating an instance of the model under Django 1.4,
due to using a naive (non-timezone-aware) datetime. We now try to use
Django’s functionality for this, and fall back on the older methods for
older versions of Django.

Contributors

	Christian Hammond

Django Evolution 0.6.5

Release date: August 15, 2011

New Features

	Added a built-in evolution to remove the Message model in Django 1.4 SVN.

Django 1.4 SVN removes the Message
model from django.contrib.auth [https://docs.djangoproject.com/en/3.1/topics/auth/#module-django.contrib.auth]. This would break evolutions, since
there wasn’t an evolution for this. We now install one if we detect that
the Message model is gone.

Bug Fixes

	Fixed the version association for baseline evolutions for apps.

The new code for installing a baseline evolution for new apps in
Django Evolution 0.6.4 was associating the wrong
Version model with the
Evolution. This doesn’t appear to cause
any real-world problems, but it does make it harder to see the proper
evolution history in the database.

Contributors

	Christian Hammond

Django Evolution 0.6.4

Release date: June 22, 2011

New Features

	Install a baseline evolution history for any new apps.

When upgrading an older database using Django Evolution when a new model
has been added and subsequent evolutions were made on that model, the
upgrade would fail. It would attempt to apply those evolutions on that
model, which, being newly created, would already have those new field
changes.

Now, like with an initial database, we install a baseline evolution
history for any new apps. This will ensure that those evolutions aren’t
applied to the models in that app.

Bug Fixes

	Fixed compatibility with Django SVN in the unit tests.

In Django SVN r16053, get_model() and get_models() only return
installed modules by default. This is calculated in part by a new
AppCache.app_labels dictionary, along with an existing
AppCache.app_store, neither of which we properly populated.

We now set both of these (though, app_labels only on versions of Django
that have it). This allows the unit tests to pass, both with older versions
of Django and Django SVN.

Contributors

	Christian Hammond

Django Evolution 0.6.3

Release date: May 9, 2011

Bug Fixes

	Fixed multi-database support with different database backends.

The multi-database support only worked when the database backends matched.
Now it should work with different types. The unit tests have been verified
to work now with different types of databases.

	Fixed a breaking with PostgreSQL when adding non-null columns with default
values. (Bugs #58 and #74)

Adding new columns that are non-null and have a default value would break
with PostgreSQL when the table otherwise had data in it. The SQL for adding
a column is an ALTER TABLE followed by an UPDATE to set all existing
records to have the new default value. PostgreSQL, however, doesn’t allow
this within the same transaction.

Now we use two ALTER TABLEs. The first adds the column with a default
value, which should affect existing records. The second drops the default.
This should ensure that the tables have the data we expect while at the same
time keeping the field attributes the same as what Django would generate.

Contributors

	Christian Hammond

Django Evolution 0.6.2

Release date: November 19, 2010

New Features

	Add compatibility with Django 1.3.

Django 1.3 introduced a change to the Session.expire_date field’s
schema, setting db_index to True. This caused Django Evolution to
fail during evolution, with no way to provide an evolution file to work
around the problem. Django Evolution now handles this by providing the
evolution when running with Django 1.3 or higher.

Contributors

	Christian Hammond

Django Evolution 0.6.1

Release date: October 25, 2010

Bug Fixes

	Fixed compatibility problems with both Django 1.1 and Python 2.4.

Contributors

	Christian Hammond

Django Evolution 0.6

Release date: October 24, 2010

New Features

	Added support for Django 1.2’s ability to use multiple databases.

This should use the existing routers used in your project. By default,
operations will happen on the ‘default’ database. This can be overridden
during evolution by passing --database=<dbname> to the
evolve command.

Patch by Marc Bee and myself.

Contributors

	Christian Hammond

	Marc Bee

Django Evolution 0.5.1

Release date: October 13, 2010

New Features

	Made the evolve management command raise
CommandError [https://docs.djangoproject.com/en/3.1/howto/custom-management-commands/#django.core.management.CommandError] instead of
sys.exit() [https://docs.python.org/3/library/sys.html#sys.exit] on failure. This makes it callable from third party
software.

Patch by Mike Conley.

	Made the evolve functionality available through an
evolve() function in the management command, allowing the rest of the
command-specific logic to be skipped (such as console output and prompting).

Patch by Mike Conley.

Bug Fixes

	Fixed incorrect defaults on SQLite when adding null fields. (Bug #49)

On SQLite, adding a null field without a default value would cause the field
name to be the default. This was due to attempting to select the field name
from the temporary table, but since the table didn’t exist, the field name
itself was being used as the value.

We are now more explicit about the fields being selected and populated. We
have two lists, and no longer assume both are identical. We also use NULL
columns for temporary table fields unconditionally.

Patch by myself and Chris Beaven.

Contributors

	Chris Beaven

	Christian Hammond

	Mike Conley

Django Evolution 0.5

Release date: May 18, 2010

Initial public release.

Frequently Asked Questions

Who maintains Django Evolution?

Originally, Django Evolution was built by two guys in Perth, Australia: Ben
Khoo and Russell Keith-Magee (a core developer on Django).

Since then, Django Evolution has been taken over by Beanbag, Inc. [https://www.beanbaginc.com/]. We have
a vested interest in keeping this alive, well-maintained, and open source for
Review Board [https://www.reviewboard.org/] and other products.

Where do I go for support?

We have a really old mailing list [http://groups.google.com/group/django-evolution] over at Google Groups, where you can ask
questions. Truthfully, this group is basically empty these days, but you can
still ask there and we’ll answer!

We also provide commercial support. You can reach out to us if you’re using
Django Evolution in production and want the assurance of someone you can reach
24/7 if something goes wrong.

What about bug reports?

You can report bugs on our bug tracker [https://hellosplat.com/s/beanbag/django-evolution/], hosted on Splat [https://www.hellosplat.com/].

When you file a bug, please be as thorough as possible. Ideally, we’d like to
see the contents of your django_project_version and django_evolution
tables before and after the upgrade, along with any evolution files, models,
and error logs.

How do I contribute patches/pull requests?

We’d love to work with you on your contributions to Django Evolution! It’ll
make our lives easier, for sure :)

While we don’t work with pull requests, we do accept patches on
reviews.reviewboard.org [https://reviews.reviewboard.org/], our Review Board [https://www.reviewboard.org/] server. You can get started by
cloning our GitHub repository [https://github.com/beanbaginc/django-evolution], and install RBTools [https://www.reviewboard.org/downloads/rbtools/] (the Review Board command
line tools).

To post new changes from your feature branch for review, run:

$ rbt post

To update an existing review request:

$ rbt post -u

See the RBTools documentation [https://www.reviewboard.org/docs/rbtools/] for more usage info.

Why evolutions and not migrations?

While most new projects would opt for Django’s own migrations, there
are a few advantages to using evolutions:

	Evolutions are faster to apply than migrations when upgrading between
arbitrary versions of the schema.

Migrations are applied one at a time. If you have 10 migrations modifying
one table, then you’ll trigger a table rebuild 10 times, which is slow –
particularly if there’s a lot of data in that table.

Evolutions going through an optimization process before they’re applied,
determining the smallest amount of changes needed. 10 evolutions for a
table will generally only trigger a single table rebuild.

When you fully own the databases you’re upgrading, this may not matter, as
you’re probably applying new migrations as you write them. However, if
you are distributing self-installed web services (such as Review Board [https://www.reviewboard.org/]),
administrators may not upgrade often. Evolutions help keep these large
upgrades from taking forever.

	There’s a wide range of Django support.

If you are still maintaining legacy applications on Django 1.6, it may be
hard to transition to newer versions. By switching to Django Evolution,
there’s a transition path. You can use evolutions for the apps you control
without conflicting with migrations, and begin the upgrade path to modern
versions of Django.

At any time, you can easily switch some or all of your apps from evolutions
to migrations, and Django Evolution will take care of it automatically.

	Django Evolution is easier for some development processes.

During development, you may make numerous changes to your database,
necessitating schema changes that you wouldn’t want to apply in production.
With migrations, you’d need to squash those development-only migration
files, which doesn’t play as well if some beta users have only a subset of
those migrations applied.

Can I switch apps from evolutions to migrations?

Yes, you can! The MoveToDjangoMigrations mutation will
instruct Django Evolution to use migrations instead of evolutions for
any future changes. Before it hands your app off entirely, it will apply any
unapplied evolutions, ensuring a sane starting point for your new migrations.

Can I switch apps from migrations to evolutions?

No, it’s one way for now. We might add this if anyone wants it in the future.
For now, we assume that people using migrations are satisfied with that, and
aren’t looking to move to evolutions.

Why do my syncdb/migrate commands act differently?

Starting in Django Evolution 2.0, the evolve command has
taken over all responsibilities for creating and updating the database,
replacing syncdb and migrate.

For compatibility, those two commands have been replaced, wrapping
evolve instead. Some functionality had to be stripped away
from the original commands, though.

Our syncdb and migrate commands don’t support loading initial_data
fixtures. This feature was deprecated in Django 1.7 and removed in 1.9, and
keeping support between Django versions is tricky. We’ve opted not to include
it (at least for now).

Our migrate command doesn’t support specifying explicit migration names to
apply, or using --fake to pretend migrations were applied.

It’s possible we’ll add compatibility in the future, but only if demand is
strong.

Management Commands

	evolution-project-sig

	evolve

	list-evolutions

	mark-evolution-applied

	wipe-evolution

evolution-project-sig

The evolution-project-sig command is used to list, show, and delete
stored project signatures.

This is really only useful if you’re working to recover from a bad state where
you’ve undone the changes made by an evolution and need to re-apply it. It
should never be used under normal use, especially on a production database.

By default, this command will confirm before making any changes to the
database. You can use --noinput to avoid the confirmation step.

Example

To list project signatures:

$./manage.py evolution-project-sig --list

To show the latest project signature:

$./manage.py evolution-project-sig --show

To show a specific project signature:

$./manage.py evolution-project-sig --show --id <ID>

To delete a project signature:

$./manage.py evolution-project-sig --delete --id <ID>

Arguments

	
---delete

	Delete a project signature.

	
--list

	List project signatures and their associated evolutions.

	
--show

	Show the current project signature, or an older one if using
--id.

	
--id

	Specify the ID of a project signature.

	
--noinput

	Delete without prompting for confirmation.

evolve

The evolve command is responsible for setting up databases and
applying any evolutions or migrations.

This is a replacement for both the syncdb and migrate
commands in Django. Running either of this will wrap evolve (though
not all of the command’s arguments will be supported when Django Evolution is
enabled).

Creating/Updating Databases

To construct a new database or apply updates, you will generally just run:

$./manage.py evolve --execute

This is the most common usage for evolve. It will create any
missing models and apply any unapplied evolutions or migrations.

Changed in version 2.0: evolve now replaces both syncdb and
migrate. In previous versions, it had to be run after
syncdb.

Generating Hinted Evolutions

When making changes to a model, it helps to see how the evolution should look
before writing it. Sometimes the evolution will be usable as-is, but sometimes
you’ll need to tweak it first.

To generate a hinted evolution, run:

$./manage.py evolve --hint

Hinted evolutions can be automatically written by using --write,
saving you a little bit of work:

$./manage.py evolve --hint --write my_new_evolution

This will take any app with a hinted evolution and write a
appdir/evolutions/my_new_evolution.py file. You will still need to
add your new evolution to the SEQUENCE list in
appdir/evolutions/__init__.py.

If you only want to write hints for a specific app, pass the app labels on the
command line, like so:

$./manage.py evolve --hint --write my_new_evolution my_app

Arguments

	
<APP_LABEL...>

	Zero or more specific app labels to evolve. If provided, only these apps
will have evolutions or migrations applied. If not provided, all
apps will be considered for evolution.

	
--database <DATABASE>

	The name of the configured database to perform the evolution against.

	
--hint

	Display sample evolutions that fulfill any database changes for apps and
models managed by evolutions. This won’t include any apps or models
managed by migrations.

	
--noinput

	Perform evolutions automatically without any input.

	
--purge

	Remove information on any non-existent applications from the stored
project signature. This won’t remove the models themselves. For that,
see DeleteModel or DeleteApplication.

	
--sql

	Display the generated SQL that would be run if applying evolutions.
This won’t include any apps or models managed by migrations.

	
-w <EVOLUTION_NAME>, --write <EVOLUTION_NAME>

	Write any hinted evolutions to a file named
appdir/evolutions/EVOLUTION_NAME. This will not include the
evolution in appdir/evolutions/__init__.py.

	
-x, --execute

	Execute the evolution process, applying any evolutions and
migrations to the database.

Warning

This can be used in combination with --hint to apply hinted
evolutions, but this is generally a bad idea, as the execution is
not properly repeatable or trackable.

list-evolutions

The list-evolutions command lists all the evolutions that have so
far been applied to the database. It can be useful for debugging, or
determining if a specific evolution has yet been applied.

Example

$./manage.py list-evolutions my_app
Applied evolutions for 'my_app':
 add_special_fields
 update_app_label
 change_name_max_length

Arguments

	
<APP_LABEL...>

	Zero or more specific app labels to list. If provided, only evolutions on
these apps will be shown.

mark-evolution-applied

The mark-evolution-applied command is used to mark evolutions as
already applied in the database.

This is really only useful if you’re working to recover from a bad state where
you’ve undone the changes made by an evolution and need to re-apply it. It
should never be used under normal use, especially on a production database.

By default, this command will confirm before marking the evolution as applied.
You can use --noinput to avoid the confirmation step.

Example

$./manage.py mark-evolution-applied --app-label my_app \
 change_name_max_length

Arguments

	
EVOLUTION_LABEL ...

	One or more specific evolution labels to mark as applied. This is required
if --all isn’t specified.

	
--all

	Mark all unapplied evolutions as applied.

	
--app-label <APP_LABEL>

	An app label the evolutions apply to.

	
--noinput

	Mark as applied without prompting for confirmation.

wipe-evolution

The wipe-evolution command is used to remove evolutions from the
list of applied evolutions.

This is really only useful if you’re working to recover from a bad state where
you’ve undone the changes made by an evolution and need to re-apply it. It
should never be used under normal use, especially on a production database.

By default, this command will confirm before wiping the evolution from the
history. You can use --noinput to avoid the confirmation step.

To see the list of evolutions that can be wiped, run
list-evolutions.

Example

$./manage.py wipe-evolution --app-label my_app change_name_max_length

Arguments

	
EVOLUTION_LABEL ...

	One or more specific evolution labels to remove from the database. If the
same evolution names exist for multiple apps, they’ll all be removed. To
isolate them to a specific app, use --app-label.

	
--app-label <APP_LABEL>

	An app label to limit evolution labels to. Only evolutions on this app will
be wiped.

	
--noinput

	Perform the wiping procedure automatically without any input.

Project Versioning Policy

Beginning with 2.0, Django Evolution uses semantic versioning, in
major.minor.micro form.

We will bump major any time there is a backwards-incompatible change to:

	Evolution definition format

	Compatibility with older versions of Django, Python, or databases

	The evolve management command’s arguments or behavior

	Public Python API

We will bump minor any time there’s a new feature.

We will bump micro any time there’s just bug or packaging fixes.

Module and Class References

Note

Most of the codebase should not be considered stable API, as many parts
will change.

The code documented here is a subset of the codebase. Backend database
implementations and some internal modules are not included.

Public API

	django_evolution

	Django Evolution version and package information.

	django_evolution.conf

	Configuration for Django Evolution.

	django_evolution.consts

	Constants used throughout Django Evolution.

	django_evolution.deprecation

	Internal support for handling deprecations in Django Evolution.

	django_evolution.errors

	Standard exceptions for Django Evolution.

	django_evolution.evolve

	Main interface for evolving applications.

	django_evolution.evolve.base

	Base classes for evolver-related objects.

	django_evolution.evolve.evolver

	Main Evolver interface for performing evolutions and migrations.

	django_evolution.evolve.evolve_app_task

	Task for evolving an application.

	django_evolution.evolve.purge_app_task

	Task for purging an application.

	django_evolution.models

	Database models for tracking project schema history.

	django_evolution.mutations

	Mutations for models, fields, and applications.

	django_evolution.mutations.add_field

	Mutation that adds a field to a model.

	django_evolution.mutations.base

	Base support for mutations.

	django_evolution.mutations.change_field

	Mutation that changes attributes on a field.

	django_evolution.mutations.change_meta

	Mutation that changes meta properties on a model.

	django_evolution.mutations.delete_application

	Mutation that deletes an application.

	django_evolution.mutations.delete_field

	Mutation for deleting fields from a model.

	django_evolution.mutations.delete_model

	Mutation that deletes a model.

	django_evolution.mutations.move_to_django_migrations

	Mutation that moves an app to Django migrations.

	django_evolution.mutations.rename_app_label

	Mutation that renames the app label for an application.

	django_evolution.mutations.rename_field

	Mutation that renames a field on a model.

	django_evolution.mutations.rename_model

	Mutation that renames a model.

	django_evolution.mutations.sql_mutation

	Mutation for executing SQL statements.

	django_evolution.serialization

	Serialization and deserialization.

	django_evolution.signals

	Signals for monitoring the evolution process.

	django_evolution.signature

	Classes for working with stored evolution state signatures.

Private API

	django_evolution.diff

	Support for diffing project signatures.

	django_evolution.mock_models

	Utilities for building mock database models and fields.

	django_evolution.mutators

	Mutators responsible for applying mutations.

	django_evolution.mutators.app_mutator

	Mutator that applies changes to an app.

	django_evolution.mutators.model_mutator

	Mutator that applies changes to a model.

	django_evolution.mutators.sql_mutator

	Mutator that applies arbitrary SQL to the database.

	django_evolution.placeholders

	Placeholder objects for hinted evolutions.

	django_evolution.support

	Constants indicating available Django features.

	django_evolution.compat.apps

	Compatibility functions for the application registration.

	django_evolution.compat.commands

	Compatibility module for management commands.

	django_evolution.compat.datastructures

	Compatibility imports for data structures.

	django_evolution.compat.db

	Compatibility functions for database-related operations.

	django_evolution.compat.models

	Compatibility functions for model-related operations.

	django_evolution.compat.picklers

	Picklers for working with serialized data.

	django_evolution.compat.py23

	Compatibility functions for Python 2 and 3.

	django_evolution.db.common

	Common evolution operations backend for databases.

	django_evolution.db.mysql

	Evolution operations backend for MySQL/MariaDB.

	django_evolution.db.postgresql

	Evolution operations backend for Postgres.

	django_evolution.db.sql_result

	Classes for storing SQL statements and Alter Table operations.

	django_evolution.db.sqlite3

	Evolution operations backend for SQLite.

	django_evolution.db.state

	Database state tracking for in-progress evolutions.

	django_evolution.utils.apps

	Utilities for working with apps.

	django_evolution.utils.datastructures

	Utilities for working with data structures.

	django_evolution.utils.evolutions

	Utilities for working with evolutions and mutations.

	django_evolution.utils.graph

	Dependency graphs for tracking and ordering evolutions and migrations.

	django_evolution.utils.migrations

	Utility functions for working with Django Migrations.

	django_evolution.utils.models

	Utilities for working with models.

	django_evolution.utils.sql

	Utilities for working with SQL statements.

django_evolution

Django Evolution version and package information.

These variables and functions can be used to identify the version of
Review Board. They’re largely used for packaging purposes.

Functions

	get_package_version()

	

	get_version_string()

	

	is_release()

	

	
django_evolution.get_version_string()

	

	
django_evolution.get_package_version()

	

	
django_evolution.is_release()

	

django_evolution.conf

Configuration for Django Evolution.

New in version 2.2.

Classes

	DjangoEvolutionSettings(settings_module)

	Settings for Django Evolution.

	
class django_evolution.conf.DjangoEvolutionSettings(settings_module)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Settings for Django Evolution.

This wraps the settings defined in django.conf.settings. If
settings.DJANGO_EVOLUTION is set, then all supported keys will be
loaded.

Legacy settings (settings.DJANGO_EVOLUTION_ENABLED and
settings.CUSTOM_EVOLUTIONS), if found, will be loaded, and will cause
a deprecation warning to be emitted.

New in version 2.2.

	
CUSTOM_EVOLUTIONS

	A mapping of app labels to lists of custom evolution modules.

	Type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
ENABLED

	Whether Django Evolution is enabled.

If enabled, the syncdb and migrate management commands will
instead use Django Evolution. Post-syncdb/migrate operations will
also cause Django Evolution to track state.

If disabled, the management commands will operate no differently
than in a normal Django installation.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__init__(settings_module)

	Initialize the settings wrapper.

	Parameters:

	settings_module (module) – The Django settings module to load from.

	
load_settings(settings_module)

	Set defaults and load settings.

	Parameters:

	settings_module (module) – The Django settings module to load from.

	
replace_settings(new_settings)

	Replace settings from a dictionary.

This is expected to take the equivalent of a
settings.DJANGO_EVOLUTION dictionary. Any valid settings found
will be loaded. Any not found will be set back to defaults.

	Parameters:

	new_settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The new settings dictionary.

django_evolution.consts

Constants used throughout Django Evolution.

Classes

	EvolutionsSource()

	The source for an app's evolutions.

	UpgradeMethod()

	Upgrade methods available for an application.

	
class django_evolution.consts.UpgradeMethod

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Upgrade methods available for an application.

	
EVOLUTIONS = 'evolutions'

	The app is upgraded through Django Evolution.

	
MIGRATIONS = 'migrations'

	The app is upgraded through Django Migrations.

	
class django_evolution.consts.EvolutionsSource

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The source for an app’s evolutions.

	
APP = 'app'

	The evolutions are provided by the app.

	
BUILTIN = 'builtin'

	The evolutions are built-in to Django Evolution.

	
PROJECT = 'project'

	The evolutions are provided custom by the project.

django_evolution.deprecation

Internal support for handling deprecations in Django Evolution.

The version-specific objects in this module are not considered stable between
releases, and may be removed at any point. The base objects are considered
stable.

New in version 2.2.

Module Attributes

	RemovedInNextDjangoEvolutionWarning

	Alias for deprecations in the next Django Evolution release.

Exceptions

	BaseRemovedInDjangoEvolutionWarning

	Base class for a Django Evolution deprecation warning.

	RemovedInDjangoEvolution30Warning

	Deprecations for features being removed in Django Evolution 3.0.

	RemovedInDjangoEvolution40Warning

	Deprecations for features being removed in Django Evolution 4.0.

	RemovedInNextDjangoEvolutionWarning

	Alias for deprecations in the next Django Evolution release.

	
exception django_evolution.deprecation.BaseRemovedInDjangoEvolutionWarning

	Bases: DeprecationWarning [https://docs.python.org/3/library/exceptions.html#DeprecationWarning]

Base class for a Django Evolution deprecation warning.

All version-specific deprecation warnings inherit from this, allowing
callers to check for Django Evolution deprecations without being tied to a
specific version.

New in version 2.2.

	
classmethod warn(message, stacklevel=2)

	Emit the deprecation warning.

This is a convenience function that emits a deprecation warning using
this class, with a suitable default stack level. Callers can provide
a useful message and a custom stack level.

	Parameters:

	
	message (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The message to show in the deprecation warning.

	stacklevel (int [https://docs.python.org/3/library/functions.html#int], optional) – The stack level for the warning.

	
exception django_evolution.deprecation.RemovedInDjangoEvolution30Warning

	Bases: BaseRemovedInDjangoEvolutionWarning

Deprecations for features being removed in Django Evolution 3.0.

Note that this class will itself be removed in Django Evolution 3.0. If you
need to check against Django Evolution deprecation warnings, please see
BaseRemovedInDjangoEvolutionWarning.

New in version 2.2.

	
exception django_evolution.deprecation.RemovedInDjangoEvolution40Warning

	Bases: BaseRemovedInDjangoEvolutionWarning

Deprecations for features being removed in Django Evolution 4.0.

Note that this class will itself be removed in Django Evolution 4.0. If you
need to check against Django Evolution deprecation warnings, please see
BaseRemovedInDjangoEvolutionWarning. Alternatively, you can use
the alias for this class, RemovedInNextDjangoEvolutionWarning.

New in version 2.2.

	
django_evolution.deprecation.RemovedInNextDjangoEvolutionWarning

	Alias for deprecations in the next Django Evolution release.

django_evolution.errors

Standard exceptions for Django Evolution.

Exceptions

	BaseMigrationError(msg)

	Base class for migration errors.

	CannotSimulate(msg)

	A mutation cannot be simulated.

	DatabaseStateError(msg)

	There was an issue working with database state.

	DjangoEvolutionSupportError(msg)

	A feature isn't supported by the current version of Django.

	EvolutionBaselineMissingError(msg)

	An evolution baseline is missing.

	EvolutionException(msg)

	Base class for a Django Evolution exception.

	EvolutionExecutionError(msg[, app_label, ...])

	Execution of an evolution failed.

	EvolutionNotImplementedError(msg)

	An operation is not supported by the mutation or database backend.

	EvolutionTaskAlreadyQueuedError(msg)

	The task has already been queued on the evolver.

	InvalidSignatureVersion(version)

	An invalid signature version was provided or found.

	MigrationConflictsError(conflicts)

	There are conflicts between migrations.

	MigrationHistoryError(msg)

	An error with the stored history of migrations.

	MissingSignatureError(msg)

	A requested signature could not be found.

	QueueEvolverTaskError(msg)

	Error queueing an evolver task.

	SimulationFailure(msg)

	A mutation simulation has failed.

	
exception django_evolution.errors.EvolutionException(msg)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class for a Django Evolution exception.

	
__init__(msg)

	

	
__str__()

	Return str(self).

	
exception django_evolution.errors.EvolutionExecutionError(msg, app_label=None, detailed_error=None, last_sql_statement=None)

	Bases: EvolutionException

Execution of an evolution failed.

Details about the failure, including the app that failed and the last
SQL statement executed, are available in the exception as attributes.

	
app_label

	The label of the app that failed evolution. This may be None.

	Type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
detailed_error

	Detailed error information from the failure that triggered this
exception. This might be another exception’s error message, or
it may be None.

	Type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
last_sql_statement

	The last SQL statement that was executed. This may be None.

	Type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__init__(msg, app_label=None, detailed_error=None, last_sql_statement=None)

	Initialize the error.

	Parameters:

	
	msg (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The error message.

	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The label of the app that failed evolution.

	detailed_error (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – Detailed error information from the failure that triggered this
exception. This might be another exception’s error message.

	last_sql_statement (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The last SQL statement that was executed.

	
exception django_evolution.errors.CannotSimulate(msg)

	Bases: EvolutionException

A mutation cannot be simulated.

	
exception django_evolution.errors.SimulationFailure(msg)

	Bases: EvolutionException

A mutation simulation has failed.

	
exception django_evolution.errors.EvolutionNotImplementedError(msg)

	Bases: EvolutionException, NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError]

An operation is not supported by the mutation or database backend.

	
exception django_evolution.errors.DatabaseStateError(msg)

	Bases: EvolutionException

There was an issue working with database state.

	
exception django_evolution.errors.MissingSignatureError(msg)

	Bases: EvolutionException

A requested signature could not be found.

	
exception django_evolution.errors.QueueEvolverTaskError(msg)

	Bases: EvolutionException

Error queueing an evolver task.

	
exception django_evolution.errors.EvolutionTaskAlreadyQueuedError(msg)

	Bases: QueueEvolverTaskError

The task has already been queued on the evolver.

	
exception django_evolution.errors.EvolutionBaselineMissingError(msg)

	Bases: EvolutionException

An evolution baseline is missing.

	
exception django_evolution.errors.InvalidSignatureVersion(version)

	Bases: EvolutionException

An invalid signature version was provided or found.

	
__init__(version)

	Initialize the exception.

	Parameters:

	version (int [https://docs.python.org/3/library/functions.html#int]) – The invalid signature version.

	
exception django_evolution.errors.BaseMigrationError(msg)

	Bases: EvolutionException

Base class for migration errors.

	
exception django_evolution.errors.MigrationHistoryError(msg)

	Bases: BaseMigrationError

An error with the stored history of migrations.

This is raised if any applied migrations have unapplied dependencies.

	
exception django_evolution.errors.MigrationConflictsError(conflicts)

	Bases: BaseMigrationError

There are conflicts between migrations.

	
__init__(conflicts)

	Initialize the error.

	Parameters:

	conflicts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of conflicts, provided by the migrations system.

	
exception django_evolution.errors.DjangoEvolutionSupportError(msg)

	Bases: EvolutionException

A feature isn’t supported by the current version of Django.

django_evolution.evolve

Main interface for evolving applications.

Changed in version 2.2: The classes have all moved to nested modules, but this module will continue
to provide forwarding imports.

	BaseEvolutionTask

	Base class for a task to perform during evolution.

	Evolver

	The main class for managing database evolutions.

	EvolveAppTask

	A task for evolving models in an application.

	PurgeAppTask

	A task for purging an application's tables from the database.

django_evolution.evolve.base

Base classes for evolver-related objects.

New in version 2.2: This was previously located in django_evolution.evolve.

Classes

	BaseEvolutionTask(task_id, evolver)

	Base class for a task to perform during evolution.

	
class django_evolution.evolve.base.BaseEvolutionTask(task_id, evolver)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for a task to perform during evolution.

	
can_simulate

	Whether the task can be simulated without requiring additional
information.

This is set after calling prepare().

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
evolution_required

	Whether an evolution is required by this task.

This is set after calling prepare().

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
evolver

	The evolver that will execute the task.

	Type:

	Evolver

	
id

	The unique ID for the task.

	Type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
new_evolutions

	A list of evolution model entries this task would create.

This is set after calling prepare().

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of django_evolution.models.Evolution

	
sql

	A list of SQL statements to perform for the task. Each entry can
be a string or tuple accepted by
run_sql().

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
classmethod prepare_tasks(evolver, tasks, **kwargs)

	Prepare a list of tasks.

This is responsible for calling prepare() on each of the
provided tasks. It can augment this by calculating any other state
needed in order to influence the tasks or react to them.

If this applies state to the class, it should always be careful to
completely reset the state on each run, in case there are multiple
Evolver instances at work within a process.

	Parameters:

	
	evolver (Evolver) – The evolver that’s handling the tasks.

	tasks (list [https://docs.python.org/3/library/stdtypes.html#list] of BaseEvolutionTask) – The list of tasks to prepare. These will match the current
class.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments to pass to the tasks’ :py:meth:`prepare
methods.

	
classmethod execute_tasks(evolver, tasks, **kwargs)

	Execute a list of tasks.

This is responsible for calling execute() on each of the
provided tasks. It can augment this by executing any steps before or
after the tasks.

If this applies state to the class, it should always be careful to
completely reset the state on each run, in case there are multiple
Evolver instances at work within a process.

This may depend on state from prepare_tasks().

	Parameters:

	
	evolver (Evolver) – The evolver that’s handling the tasks.

	tasks (list [https://docs.python.org/3/library/stdtypes.html#list] of BaseEvolutionTask) – The list of tasks to execute. These will match the current
class.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments to pass to the tasks’ :py:meth:`execute
methods.

	
__init__(task_id, evolver)

	Initialize the task.

	Parameters:

	
	task_id (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The unique ID for the task.

	evolver (Evolver) – The evolver that will execute the task.

	
is_mutation_mutable(mutation, **kwargs)

	Return whether a mutation is mutable.

This is a handy wrapper around BaseMutation.is_mutable that passes
standard arguments based on evolver state. Callers should pass any
additional arguments that are required as keyword arguments.

	Parameters:

	
	mutation (django_evolution.mutations.BaseMutation) – The mutation to check.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments to pass to
BaseMutation.is_mutable.

	Returns:

	True if the mutation is mutable. False if it is not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
prepare(hinted, **kwargs)

	Prepare state for this task.

This is responsible for determining whether the task applies to the
database. It must set evolution_required,
new_evolutions, and sql.

This must be called before execute() or
get_evolution_content().

	Parameters:

	
	hinted (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to prepare the task for hinted evolutions.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], unused) – Additional keyword arguments passed for task preparation.
This is provide for future expansion purposes.

	
execute(cursor=None, sql_executor=None, **kwargs)

	Execute the task.

This will make any changes necessary to the database.

Changed in version 2.1: cursor is now deprecated in favor of sql_executor.

	Parameters:

	
	cursor (django.db.backends.util.CursorWrapper, optional) – The legacy database cursor used to execute queries.

	sql_executor (django_evolution.utils.sql.SQLExecutor, optional) – The SQL executor used to run any SQL on the database.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments, for future expansion.

	Raises:

	django_evolution.errors.EvolutionExecutionError – The evolution task failed. Details are in the error.

	
get_evolution_content()

	Return the content for an evolution file for this task.

	Returns:

	The evolution content.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__repr__()

	Return a string representation of the task.

	Returns:

	The string representation.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__str__()

	Return a string description of the task.

	Returns:

	The string description.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

django_evolution.evolve.evolver

Main Evolver interface for performing evolutions and migrations.

New in version 2.2: This was previously located in django_evolution.evolve.

Classes

	Evolver([hinted, verbosity, interactive, ...])

	The main class for managing database evolutions.

	
class django_evolution.evolve.evolver.Evolver(hinted=False, verbosity=0, interactive=False, database_name='default')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The main class for managing database evolutions.

The evolver is used to queue up tasks that modify the database. These
allow for evolving database models and purging applications across an
entire Django project or only for specific applications. Custom tasks
can even be written by an application if very specific database
operations need to be made outside of what’s available in an evolution.

Tasks are executed in order, but batched by the task type. That is, if
two instances of TaskType1 are queued, followed by an instance of
TaskType2, and another of TaskType1, all 3 tasks of TaskType1
will be executed at once, with the TaskType2 task following.

Callers are expected to create an instance and queue up one or more tasks.
Once all tasks are queued, the changes can be made using evolve().
Alternatively, evolution hints can be generated using
generate_hints().

Projects will generally utilize this through the existing evolve
Django management command.

	
connection

	The database connection object being used for the evolver.

	Type:

	django.db.backends.base.base.BaseDatabaseWrapper

	
database_name

	The name of the database being evolved.

	Type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
database_state

	The state of the database, for evolution purposes.

	Type:

	django_evolution.db.state.DatabaseState

	
evolved

	Whether the evolver has already performed its evolutions. These
can only be done once per evolver.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hinted

	Whether the evolver is operating against hinted evolutions. This
may result in changes to the database without there being any
accompanying evolution files backing those changes.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
interactive

	Whether the evolution operations are being performed in a
way that allows interactivity on the command line. This is
passed along to signal emissions.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
initial_diff

	The initial diff between the stored project signature and the
current project signature.

	Type:

	django_evolution.diff.Diff

	
project_sig

	The project signature. This will start off as the previous
signature stored in the database, but will be modified when
mutations are simulated.

	Type:

	django_evolution.signature.ProjectSignature

	
verbosity

	The verbosity level for any output. This is passed along to
signal emissions.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
version

	The project version entry saved as the result of any evolution
operations. This contains the current version of the project
signature. It may be None until evolve() is called.

	Type:

	django_evolution.models.Version

	
__init__(hinted=False, verbosity=0, interactive=False, database_name='default')

	Initialize the evolver.

	Parameters:

	
	hinted (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to operate against hinted evolutions. This may
result in changes to the database without there being any
accompanying evolution files backing those changes.

	verbosity (int [https://docs.python.org/3/library/functions.html#int], optional) – The verbosity level for any output. This is passed along to
signal emissions.

	interactive (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the evolution operations are being performed in a
way that allows interactivity on the command line. This is
passed along to signal emissions.

	database_name (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database to evolve.

	Raises:

	django_evolution.errors.EvolutionBaselineMissingError – An initial baseline for the project was not yet installed.
 This is due to syncdb/migrate not having been run.

	
property tasks

	A list of all tasks that will be performed.

This can only be accessed after all necessary tasks have been queued.

	
can_simulate()

	Return whether all queued tasks can be simulated.

If any tasks cannot be simulated (for instance, a hinted evolution
requiring manually-entered values), then this will return False.

This can only be called after all tasks have been queued.

	Returns:

	True if all queued tasks can be simulated. False if any
cannot.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_evolution_required()

	Return whether there are any evolutions required.

This can only be called after all tasks have been queued.

	Returns:

	True if any tasks require evolution. False if none do.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
diff_evolutions()

	Return a diff between stored and post-evolution project signatures.

This will run through all queued tasks, preparing them and simulating
their changes. The returned diff will represent the changes made in
those tasks.

This can only be called after all tasks have been queued.

	Returns:

	The diff between the stored signature and the queued changes.

	Return type:

	django_evolution.diff.Diff

	
iter_evolution_content()

	Generate the evolution content for all queued tasks.

This will loop through each tasks and yield any evolution content
provided.

This can only be called after all tasks have been queued.

	Yields:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – A tuple of (task, evolution_content).

	
queue_evolve_all_apps()

	Queue an evolution of all registered Django apps.

This cannot be used if queue_evolve_app() is also being used.

	Raises:

	
	django_evolution.errors.EvolutionTaskAlreadyQueuedError – An evolution for an app was already queued.

	django_evolution.errors.QueueEvolverTaskError – Error queueing a non-duplicate task. Tasks may have already
 been prepared and finalized.

	
queue_evolve_app(app)

	Queue an evolution of a registered Django app.

	Parameters:

	app (module) – The Django app to queue an evolution for.

	Raises:

	
	django_evolution.errors.EvolutionTaskAlreadyQueuedError – An evolution for this app was already queued.

	django_evolution.errors.QueueEvolverTaskError – Error queueing a non-duplicate task. Tasks may have already
 been prepared and finalized.

	
queue_purge_old_apps()

	Queue the purging of all old, stale Django apps.

This will purge any apps that exist in the stored project signature
but that are no longer registered in Django.

This generally should not be used if queue_purge_app() is also
being used.

	Raises:

	
	django_evolution.errors.EvolutionTaskAlreadyQueuedError – A purge of an app was already queued.

	django_evolution.errors.QueueEvolverTaskError – Error queueing a non-duplicate task. Tasks may have already
 been prepared and finalized.

	
queue_purge_app(app_label)

	Queue the purging of a Django app.

	Parameters:

	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the app to purge.

	Raises:

	
	django_evolution.errors.EvolutionTaskAlreadyQueuedError – A purge of this app was already queued.

	django_evolution.errors.QueueEvolverTaskError – Error queueing a non-duplicate task. Tasks may have already
 been prepared and finalized.

	
queue_task(task)

	Queue a task to run during evolution.

This should only be directly called if working with custom tasks.
Otherwise, use a more specific queue method.

	Parameters:

	task (BaseEvolutionTask) – The task to queue.

	Raises:

	
	django_evolution.errors.EvolutionTaskAlreadyQueuedError – A purge of this app was already queued.

	django_evolution.errors.QueueEvolverTaskError – Error queueing a non-duplicate task. Tasks may have already
 been prepared and finalized.

	
evolve()

	Perform the evolution.

This will run through all queued tasks and attempt to apply them in
a database transaction, tracking each new batch of evolutions as the
tasks finish.

This can only be called once per evolver instance.

	Raises:

	
	django_evolution.errors.EvolutionException – Something went wrong during the evolution process. Details
 are in the error message. Note that a more specific exception
 may be raised.

	django_evolution.errors.EvolutionExecutionError – A specific evolution task failed. Details are in the error.

	
sql_executor(**kwargs)

	Return an SQLExecutor for executing SQL.

This is a convenience method for creating an
SQLExecutor to operate using
the evolver’s current database.

New in version 2.1.

	Parameters:

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments used to construct the executor.

	Returns:

	The new SQLExecutor.

	Return type:

	django_evolution.utils.sql.SQLExecutor

	
transaction()

	Execute database operations in a transaction.

This is a convenience method for executing in a transaction using
the evolver’s current database.

Deprecated since version 2.1: This has been replaced with manual calls to
SQLExecutor.

	Context:

	django.db.backends.util.CursorWrapper – The cursor used to execute statements.

django_evolution.evolve.evolve_app_task

Task for evolving an application.

New in version 2.2: This was previously located in django_evolution.evolve.

Classes

	EvolveAppTask(evolver, app[, evolutions, ...])

	A task for evolving models in an application.

	
class django_evolution.evolve.evolve_app_task.EvolveAppTask(evolver, app, evolutions=None, migrations=None)

	Bases: BaseEvolutionTask

A task for evolving models in an application.

This task will run through any evolutions in the provided application and
handle applying each of those evolutions that haven’t yet been applied.

	
app

	The app module to evolve.

	Type:

	module

	
app_label

	The app label for the app to evolve.

	Type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod prepare_tasks(evolver, tasks, hinted=False, **kwargs)

	Prepare a list of tasks.

If migrations are supported, then before preparing any of the tasks,
this will begin setting up state needed to apply any migrations for
apps that use them (or will use them after any evolutions are applied).

After tasks are prepared, this will apply any migrations that need to
be applied, updating the app’s signature appropriately and recording
all applied migrations.

	Parameters:

	
	evolver (Evolver) – The evolver that’s handling the tasks.

	tasks (list [https://docs.python.org/3/library/stdtypes.html#list] of BaseEvolutionTask) – The list of tasks to prepare. These will match the current
class.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments to pass to the tasks’ :py:meth:`prepare
methods.

	Raises:

	django_evolution.errors.BaseMigrationError – There was an error with the setup or validation of migrations.
 A subclass containing additional details will be raised.

	
classmethod execute_tasks(evolver, tasks, **kwargs)

	Execute a list of tasks.

This is responsible for calling execute() on each of the
provided tasks. It can augment this by executing any steps before or
after the tasks.

	Parameters:

	
	evolver (Evolver) – The evolver that’s handling the tasks.

	tasks (list [https://docs.python.org/3/library/stdtypes.html#list] of BaseEvolutionTask) – The list of tasks to execute. These will match the current
class.

	cursor (django.db.backends.util.CursorWrapper) – The database cursor used to execute queries.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments to pass to the tasks’ :py:meth:`execute
methods.

	
__init__(evolver, app, evolutions=None, migrations=None)

	Initialize the task.

	Parameters:

	
	evolver (Evolver) – The evolver that will execute the task.

	app (module) – The app module to evolve.

	evolutions (list [https://docs.python.org/3/library/stdtypes.html#list] of dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Optional evolutions to use for the app instead of loading
from a file. This is intended for testing purposes.

Each dictionary needs a label key for the evolution label
and a mutations key for a list of
BaseMutation instances.

	migrations (list [https://docs.python.org/3/library/stdtypes.html#list] of django.db.migrations.Migration, optional) – Optional migrations to use for the app instead of loading from
files. This is intended for testing purposes.

	
generate_mutations_info(pending_mutations, update_evolver=True)

	Generate information on a series of mutations.

This will optimize and run the list of pending mutations against the
evolver’s stored signature and return the optimized list of mutations
and SQL, along with some information on the app.

The evolver’s signature will be updated by default, but this can be
disabled in order to just retrieve information without making any
changes.

	Parameters:

	
	pending_mutations (list [https://docs.python.org/3/library/stdtypes.html#list] of :class:`` django_evolution.mutations.BaseMutation) – The list of pending mutations to run.

	update_evolver (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to update the evolver’s signature.

	Returns:

	The resulting information from running the mutations. This
includes the following:

	app_mutator (AppMutator):
	The app mutator that ran the mutations.

	applied_migrations (list of tuple):
	The list of migrations that were ultimately marked as applied.

	mutations (list of BaseMutation):
	The optimized list of mutations.

	sql (list):
	The optimized list of SQL statements to execute.

	upgrade_method (unicode):
	The resulting upgrade method for the app, after applying all
mutations.

If there are no mutations to run after optimization, this will
return None.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
prepare(hinted=False, **kwargs)

	Prepare state for this task.

This will determine if there are any unapplied evolutions in the app,
and record that state and the SQL needed to apply the evolutions.

	Parameters:

	
	hinted (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to prepare the task for hinted evolutions.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], unused) – Additional keyword arguments passed for task preparation.

	
execute(cursor=None, sql_executor=None, sql=None, evolutions=None, create_models_now=False)

	Execute the task.

This will apply any evolutions queued up for the app.

Before the evolutions are applied for the app, the
applying_evolution signal will
be emitted. After,
applied_evolution will be emitted.

Changed in version 2.1:

	Added sql and evolutions arguments.

	Deprecated cursor in favor of sql_executor.

	Parameters:

	
	cursor (django.db.backends.util.CursorWrapper, unused) – The legacy database cursor. This is no longer used.

	sql_executor (django_evolution.utils.sql.SQLExecutor) – The SQL executor used to run any SQL on the database.

	sql (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – A list of explicit SQL statements to execute.

This will override sql if provided.

	evolutions (list [https://docs.python.org/3/library/stdtypes.html#list] of django_evolution.models.Evolution, optional) – A list of evolutions being applied. These will be sent in the
applying_evolution and
applied_evolution signals.

This will override new_evolutions if provided.

	create_models_now (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to create models as part of this execution. Normally,
this is handled in execute_tasks(), but this flag
allows for more fine-grained control of table creation in
limited circumstances (intended only by Evolver).

	Raises:

	django_evolution.errors.EvolutionExecutionError – The evolution task failed. Details are in the error.

	
get_evolution_content()

	Return the content for an evolution file for this task.

	Returns:

	The evolution content.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__str__()

	Return a string description of the task.

	Returns:

	The string description.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

django_evolution.evolve.purge_app_task

Task for purging an application.

New in version 2.2: This was previously located in django_evolution.evolve.

Classes

	PurgeAppTask(evolver, app_label)

	A task for purging an application's tables from the database.

	
class django_evolution.evolve.purge_app_task.PurgeAppTask(evolver, app_label)

	Bases: BaseEvolutionTask

A task for purging an application’s tables from the database.

	
app_label

	The app label for the app to purge.

	Type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__init__(evolver, app_label)

	Initialize the task.

	Parameters:

	
	evolver (Evolver) – The evolver that will execute the task.

	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The app label for the app to purge.

	
prepare(**kwargs)

	Prepare state for this task.

This will determine if the app’s tables need to be deleted from
the database, and prepare the SQL for doing so.

	Parameters:

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], unused) – Keyword arguments passed for task preparation.

	
execute(cursor=None, sql_executor=None, **kwargs)

	Execute the task.

This will delete any tables owned by the application.

	Parameters:

	
	cursor (django.db.backends.util.CursorWrapper, unused) – The legacy database cursor. This is no longer used.

	sql_executor (django_evolution.utils.sql.SQLExecutor, optional) – The SQL executor used to run any SQL on the database.

	Raises:

	django_evolution.errors.EvolutionExecutionError – The evolution task failed. Details are in the error.

	
__str__()

	Return a string description of the task.

	Returns:

	The string description.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

django_evolution.models

Database models for tracking project schema history.

Classes

	Evolution(id, version, app_label, label)

	

	SignatureField([verbose_name, name, ...])

	A field for loading and storing project signatures.

	Version(id, signature, when)

	

	VersionManager(*args, **kwargs)

	Manage Version models.

	
class django_evolution.models.VersionManager(*args, **kwargs)

	Bases: Manager

Manage Version models.

This introduces a convenience function for finding the current Version
model for the database.

	
current_version(using=None)

	Return the Version model for the current schema.

This will find the Version with both the latest timestamp and the
latest ID. It’s here as a replacement for the old call to
latest(), which only operated on the timestamp and would
find the wrong entry if two had the same exact timestamp.

	Parameters:

	using (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The database alias name to use for the query. Defaults
to None, the default database.

	Raises:

	Version.DoesNotExist – No such version exists.

	Returns:

	The current Version object for the database.

	Return type:

	Version

	
__slotnames__ = []

	

	
class django_evolution.models.SignatureField(verbose_name=None, name=None, primary_key=False, max_length=None, unique=False, blank=False, null=False, db_index=False, rel=None, default=<class 'django.db.models.fields.NOT_PROVIDED'>, editable=True, serialize=True, unique_for_date=None, unique_for_month=None, unique_for_year=None, choices=None, help_text='', db_column=None, db_tablespace=None, auto_created=False, validators=(), error_messages=None)

	Bases: TextField

A field for loading and storing project signatures.

This will handle deserializing any project signatures stored in the
database, converting them into a
ProjectSignature, and then
writing a serialized version back to the database.

	
description = 'Signature'

	

	
contribute_to_class(cls, name)

	Perform operations when added to a class.

This will listen for when an instance is constructed in order to
perform some initial work.

	Parameters:

	
	cls (type [https://docs.python.org/3/library/functions.html#type]) – The model class.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field.

	
value_to_string(obj)

	Return a serialized string value from the field.

	Parameters:

	obj (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model instance.

	Returns:

	The serialized string contents.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
to_python(value)

	Return a ProjectSignature value from the field contents.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object]) – The current value assigned to the field. This might be
serialized string content or a
ProjectSignature
instance.

	Returns:

	The project signature stored in the field.

	Return type:

	django_evolution.signatures.ProjectSignature

	Raises:

	django.core.exceptions.ValidationError [https://docs.djangoproject.com/en/3.1/ref/exceptions/#django.core.exceptions.ValidationError] – The field contents are of an unexpected type.

	
get_prep_value(value)

	Return a prepared Python value to work with.

This simply wraps to_python().

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object]) – The current value assigned to the field. This might be
serialized string content or a
ProjectSignature
instance.

	Returns:

	The project signature stored in the field.

	Return type:

	django_evolution.signatures.ProjectSignature

	Raises:

	django.core.exceptions.ValidationError [https://docs.djangoproject.com/en/3.1/ref/exceptions/#django.core.exceptions.ValidationError] – The field contents are of an unexpected type.

	
get_db_prep_value(value, connection, prepared=False)

	Return a prepared value for use in database operations.

	Parameters:

	
	value (object [https://docs.python.org/3/library/functions.html#object]) – The current value assigned to the field. This might be
serialized string content or a
ProjectSignature
instance.

	connection (django.db.backends.base.BaseDatabaseWrapper) – The database connection to operate on.

	prepared (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the value is already prepared for Python.

	Returns:

	The value prepared for database operations.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.models.Version(id, signature, when)

	Bases: Model

	
signature

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
when

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django_evolution.models.VersionManager object>

	

	
is_hinted()

	Return whether this is a hinted version.

Hinted versions store a signature without any accompanying evolutions.

	Returns:

	True if this is a hinted evolution. False if it’s based on
explicit evolutions.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Return str(self).

	
evolutions

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
get_next_by_when(*, field=<django.db.models.fields.DateTimeField: when>, is_next=True, **kwargs)

	

	
get_previous_by_when(*, field=<django.db.models.fields.DateTimeField: when>, is_next=False, **kwargs)

	

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
class django_evolution.models.Evolution(id, version, app_label, label)

	Bases: Model

	
version

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

	
app_label

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
label

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
__str__()

	Return str(self).

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
version_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

django_evolution.mutations

Mutations for models, fields, and applications.

Changed in version 2.2: The classes have all been moved to nested modules. This module will
provide forwarding imports, and will continue to be the primary place to
import these mutations.

	AddField

	A mutation that adds a field to a model.

	BaseModelFieldMutation

	Base class for any fields that mutate a model.

	BaseModelMutation

	Base class for a mutation affecting a single model.

	BaseUpgradeMethodMutation

	Base class for a mutation that changes an app's upgrade method.

	BaseMutation

	Base class for a schema mutation.

	Simulation

	State for a database mutation simulation.

	ChangeField

	A mutation that changes attributes on a field on a model.

	ChangeMeta

	A mutation that changes meta properties on a model.

	DeleteApplication

	A mutation that deletes an application.

	DeleteField

	A mutation that deletes a field from a model.

	DeleteModel

	A mutation that deletes a model.

	MoveToDjangoMigrations

	A mutation that uses Django migrations for an app's future upgrades.

	RenameAppLabel

	A mutation that renames the app label for an application.

	RenameField

	A mutation that renames a field on a model.

	RenameModel

	A mutation that renames a model.

	SQLMutation

	A mutation that executes SQL on the database.

django_evolution.mutations.add_field

Mutation that adds a field to a model.

New in version 2.2.

Classes

	AddField(model_name, field_name, field_type)

	A mutation that adds a field to a model.

	
class django_evolution.mutations.add_field.AddField(model_name, field_name, field_type, initial=None, **field_attrs)

	Bases: BaseModelFieldMutation

A mutation that adds a field to a model.

Changed in version 2.2: Moved into the django_evolution.mutations.add_field module.

	
simulation_failure_error = 'Cannot add the field "%(field_name)s" to model "%(app_label)s.%(model_name)s".'

	

	
__init__(model_name, field_name, field_type, initial=None, **field_attrs)

	Initialize the mutation.

	Parameters:

	
	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model to add the field to.

	field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the new field.

	field_type (cls) – The field class to use. This must be a subclass of
django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field].

	initial (object [https://docs.python.org/3/library/functions.html#object], optional) – The initial value for the field. This is required if non-null.

	**field_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Attributes to set on the field.

	
get_hint_params()

	Return parameters for the mutation’s hinted evolution.

	Returns:

	A list of parameter strings to pass to the mutation’s constructor
in a hinted evolution.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
simulate(simulation)

	Simulate the mutation.

This will alter the database schema to add the specified field.

	Parameters:

	simulation (Simulation) – The state for the simulation.

	Raises:

	django_evolution.errors.SimulationFailure – The simulation failed. The reason is in the exception’s
 message.

	
mutate(mutator, model)

	Schedule a field addition on the mutator.

This will instruct the mutator to add a new field on a model. It will
be scheduled and later executed on the database, if not optimized out.

	Parameters:

	
	mutator (django_evolution.mutators.ModelMutator) – The mutator to perform an operation on.

	model (MockModel) – The model being mutated.

	
add_column(mutator, model)

	Add a standard column to the model.

	Parameters:

	
	mutator (django_evolution.mutators.ModelMutator) – The mutator to perform an operation on.

	model (MockModel) – The model being mutated.

	
add_m2m_table(mutator, model)

	Add a ManyToMany column to the model and an accompanying table.

	Parameters:

	
	mutator (django_evolution.mutators.ModelMutator) – The mutator to perform an operation on.

	model (MockModel) – The model being mutated.

django_evolution.mutations.base

Base support for mutations.

New in version 2.2.

Classes

	BaseModelFieldMutation(model_name, field_name)

	Base class for any fields that mutate a model.

	BaseModelMutation(model_name)

	Base class for a mutation affecting a single model.

	BaseMutation()

	Base class for a schema mutation.

	BaseUpgradeMethodMutation()

	Base class for a mutation that changes an app's upgrade method.

	Simulation(mutation, app_label, project_sig, ...)

	State for a database mutation simulation.

	
class django_evolution.mutations.base.Simulation(mutation, app_label, project_sig, database_state, legacy_app_label=None, database='default')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

State for a database mutation simulation.

This provides state and utility functions for simulating a mutation on
a database signature. This is provided to BaseMutation.simulate()
functions, given them access to all simulation state and a consistent way
of failing simulations.

Changed in version 2.2: Moved into the django_evolution.mutations.base module.

	
__init__(mutation, app_label, project_sig, database_state, legacy_app_label=None, database='default')

	Initialize the simulation state.

	Parameters:

	
	mutation (BaseMutation) – The mutation this simulation applies to.

	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the application this simulation applies to.

	project_sig (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The project signature for the simulation to look up and
modify.

	database_state (django_evolution.db.state.DatabaseState) – The database state for the simulation to look up and modify.

	legacy_app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The legacy label of the app this simulation applies to.
This is based on the module name and is used in the
transitioning of pre-Django 1.7 signatures.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The registered database name in Django to simulate operating
on.

	
get_evolver()

	Return an evolver for the database.

	Returns:

	The database evolver for this type of database.

	Return type:

	django_evolution.db.EvolutionOperationsMulti

	
get_app_sig()

	Return the current application signature.

	Returns:

	The application signature.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	The signature for the app.

	Return type:

	django_evolution.signature.AppSignature

	Raises:

	django_evolution.errors.SimulationFailure – A signature could not be found for the application.

	
get_model_sig(model_name)

	Return the signature for a model with the given name.

	Parameters:

	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model to fetch a signature for.

	Returns:

	The signature for the model.

	Return type:

	django_evolution.signature.ModelSignature

	Raises:

	django_evolution.errors.SimulationFailure – A signature could not be found for the model or its parent
 application.

	
get_field_sig(model_name, field_name)

	Return the signature for a field with the given name.

	Parameters:

	
	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model containing the field.

	field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field to fetch a signature for.

	Returns:

	The signature for the field.

	Return type:

	django_evolution.signature.FieldSignature

	Raises:

	django_evolution.errors.SimulationFailure – A signature could not be found for the field, its parent
 model, or its parent application.

	
fail(error, **error_vars)

	Fail the simulation.

This will end up raising a
SimulationFailure with an error
message based on the mutation’s simulation failed message an the
provided message.

	Parameters:

	
	error (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The error message for this particular failure.

	**error_vars (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Variables to include in the error message. These will
override any defaults for the mutation’s error.

	Raises:

	django_evolution.errors.SimulationFailure – The resulting simulation failure with the given error.

	
class django_evolution.mutations.base.BaseMutation

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for a schema mutation.

These are responsible for simulating schema mutations and applying actual
mutations to a database signature.

Changed in version 2.2: Moved into the django_evolution.mutations.base module.

	
simulation_failure_error = 'Cannot simulate the mutation.'

	

	
error_vars = {}

	

	
generate_hint()

	Return a hinted evolution for the mutation.

This will generate a line that will be used in a hinted evolution
file. This method generally should not be overridden. Instead, use
get_hint_params().

	Returns:

	A hinted evolution statement for this mutation.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
get_hint_params()

	Return parameters for the mutation’s hinted evolution.

	Returns:

	A list of parameter strings to pass to the mutation’s constructor
in a hinted evolution.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
generate_dependencies(app_label, **kwargs)

	Return automatic dependencies for the parent evolution.

This allows a mutation to affect the order in which the parent
evolution is applied, relative to other evolutions or migrations.

New in version 2.1.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the app containing this mutation.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments, for future use.

	Returns:

	A dictionary of dependencies. This may have zero or more of the
following keys:

	before_migrations

	after_migrations

	before_evolutions

	after_evolutions

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
run_simulation(**kwargs)

	Run a simulation for a mutation.

This will prepare and execute a simulation on this mutation,
constructing a Simulation and passing it to
simulate(). The simulation will apply a mutation on the
provided database signature, modifying it to match the state described
to the mutation. This allows Django Evolution to test evolutions before
they hit the database.

	Parameters:

	simulation (Simulation) – The state for the simulation.

	Raises:

	
	django_evolution.errors.CannotSimulate – The simulation cannot be executed for this mutation. The
 reason is in the exception’s message.

	django_evolution.errors.SimulationFailure – The simulation failed. The reason is in the exception’s
 message.

	
simulate(simulation)

	Perform a simulation of a mutation.

This will attempt to perform a mutation on the database signature,
modifying it to match the state described to the mutation. This allows
Django Evolution to test evolutions before they hit the database.

	Parameters:

	simulation (Simulation) – The state for the simulation.

	Raises:

	
	django_evolution.errors.CannotSimulate – The simulation cannot be executed for this mutation. The
 reason is in the exception’s message.

	django_evolution.errors.SimulationFailure – The simulation failed. The reason is in the exception’s
 message.

	
mutate(mutator)

	Schedule a database mutation on the mutator.

This will instruct the mutator to perform one or more database
mutations for an app. Those will be scheduled and later executed on the
database, if not optimized out.

	Parameters:

	mutator (django_evolution.mutators.AppMutator) – The mutator to perform an operation on.

	Raises:

	django_evolution.errors.EvolutionNotImplementedError – The configured mutation is not supported on this type of
 database.

	
is_mutable(app_label, project_sig, database_state, database)

	Return whether the mutation can be applied to the database.

This should check if the database or parts of the signature matches
the attributes provided to the mutation.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label for the Django application to be mutated.

	project_sig (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The project’s schema signature.

	database_state (django_evolution.db.state.DatabaseState) – The database’s schema signature.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database the operation would be performed on.

	Returns:

	True if the mutation can run. False if it cannot.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
serialize_value(value)

	Serialize a value for use in a mutation statement.

This will attempt to represent the value as something Python can
execute, across Python versions. The string representation of the
value is used by default.

See django_evolution.serialization.serialize_to_python()
for details.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object]) – The value to serialize.

	Returns:

	The serialized string.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
serialize_attr(attr_name, attr_value)

	Serialize an attribute for use in a mutation statement.

This will create a name=value string, with the value serialized
using serialize_value().

	Parameters:

	
	attr_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute’s name.

	attr_value (object [https://docs.python.org/3/library/functions.html#object]) – The attribute’s value.

	Returns:

	The serialized attribute string.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__hash__()

	Return a hash of this mutation.

	Returns:

	The mutation’s hash.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
__eq__(other)

	Return whether this mutation equals another.

Two mutations are equal if they’re of the same type and generate
the same hinted evolution.

	Parameters:

	other (BaseMutation) – The mutation to compare against.

	Returns:

	True if the mutations are equal. False if they are not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Return a hinted evolution for the mutation.

	Returns:

	The hinted evolution.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__repr__()

	Return a string representation of the mutation.

	Returns:

	A string representation of the mutation.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.mutations.base.BaseUpgradeMethodMutation

	Bases: BaseMutation

Base class for a mutation that changes an app’s upgrade method.

New in version 2.2.

	
is_mutable(*args, **kwargs)

	Return whether the mutation can be applied to the database.

	Parameters:

	
	*args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], unused) – Unused positional arguments.

	**kwargs (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], unused) – Unused positional arguments.

	Returns:

	True, always.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
generate_dependencies(app_label, **kwargs)

	Return automatic dependencies for the parent evolution.

This allows a mutation to affect the order in which the parent
evolution is applied, relative to other evolutions or migrations.

This must be implemented by subclasses.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the app containing this mutation.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments, for future use.

	Returns:

	A dictionary of dependencies. This may have zero or more of the
following keys:

	before_migrations

	after_migrations

	before_evolutions

	after_evolutions

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mutate(mutator)

	Schedule an app mutation on the mutator.

As this mutation just modifies state on the signature, no actual
database operations are performed. By default, this does nothing.

	Parameters:

	mutator (django_evolution.mutators.AppMutator, unused) – The mutator to perform an operation on.

	
class django_evolution.mutations.base.BaseModelMutation(model_name)

	Bases: BaseMutation

Base class for a mutation affecting a single model.

Changed in version 2.2: Moved into the django_evolution.mutations.base module.

	
error_vars = {'model_name': 'model_name'}

	

	
__init__(model_name)

	Initialize the mutation.

	Parameters:

	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model being mutated.

	
evolver(model, database_state, database=None)

	

	
mutate(mutator, model)

	Schedule a model mutation on the mutator.

This will instruct the mutator to perform one or more database
mutations for a model. Those will be scheduled and later executed on
the database, if not optimized out.

	Parameters:

	
	mutator (django_evolution.mutators.ModelMutator) – The mutator to perform an operation on.

	model (MockModel) – The model being mutated.

	Raises:

	django_evolution.errors.EvolutionNotImplementedError – The configured mutation is not supported on this type of
 database.

	
is_mutable(app_label, project_sig, database_state, database)

	Return whether the mutation can be applied to the database.

This will if the database matches that of the model.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label for the Django application to be mutated.

	project_sig (dict [https://docs.python.org/3/library/stdtypes.html#dict], unused) – The project’s schema signature.

	database_state (django_evolution.db.state.DatabaseState, unused) – The database state.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database the operation would be performed on.

	Returns:

	True if the mutation can run. False if it cannot.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class django_evolution.mutations.base.BaseModelFieldMutation(model_name, field_name)

	Bases: BaseModelMutation

Base class for any fields that mutate a model.

This is used for classes that perform any mutation on a model. Such
mutations will be provided a model they can work with.

Operations added to the mutator by this field will be associated with that
model. That will allow the operations backend to perform any optimizations
to improve evolution time for the model.

Changed in version 2.2: Moved into the django_evolution.mutations.base module.

	
error_vars = {'field_name': 'field_name', 'model_name': 'model_name'}

	

	
__init__(model_name, field_name)

	Initialize the mutation.

	Parameters:

	
	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model containing the field.

	field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field to mutate.

django_evolution.mutations.change_field

Mutation that changes attributes on a field.

New in version 2.2.

Classes

	ChangeField(model_name, field_name[, ...])

	A mutation that changes attributes on a field on a model.

	
class django_evolution.mutations.change_field.ChangeField(model_name, field_name, field_type=None, initial=None, **field_attrs)

	Bases: BaseModelFieldMutation

A mutation that changes attributes on a field on a model.

Changed in version 2.2:

	Moved into the django_evolution.mutations.change_field
module.

	field_type can now be changed.

	
simulation_failure_error = 'Cannot change the field "%(field_name)s" on model "%(app_label)s.%(model_name)s".'

	

	
__init__(model_name, field_name, field_type=None, initial=None, **field_attrs)

	Initialize the mutation.

	Parameters:

	
	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model containing the field to change.

	field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field to change.

	field_type (type [https://docs.python.org/3/library/functions.html#type], optional) – The new type of the field. This must be a subclass of
Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field].

New in version 2.2.

	initial (object [https://docs.python.org/3/library/functions.html#object], optional) – The initial value for the field. This is required if non-null.

	**field_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Attributes to set on the field.

	
get_hint_params()

	Return parameters for the mutation’s hinted evolution.

	Returns:

	A list of parameter strings to pass to the mutation’s constructor
in a hinted evolution.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
simulate(simulation)

	Simulate the mutation.

This will alter the database schema to change attributes for the
specified field.

	Parameters:

	simulation (Simulation) – The state for the simulation.

	Raises:

	django_evolution.errors.SimulationFailure – The simulation failed. The reason is in the exception’s
 message.

	
mutate(mutator, model)

	Schedule a field change on the mutator.

This will instruct the mutator to change attributes on a field on a
model. It will be scheduled and later executed on the database, if not
optimized out.

	Parameters:

	
	mutator (django_evolution.mutators.ModelMutator) – The mutator to perform an operation on.

	model (MockModel) – The model being mutated.

django_evolution.mutations.change_meta

Mutation that changes meta properties on a model.

New in version 2.2.

Classes

	ChangeMeta(model_name, prop_name, new_value)

	A mutation that changes meta properties on a model.

	
class django_evolution.mutations.change_meta.ChangeMeta(model_name, prop_name, new_value)

	Bases: BaseModelMutation

A mutation that changes meta properties on a model.

Changed in version 2.2: Moved into the django_evolution.mutations.change_meta module.

	
simulation_failure_error = 'Cannot change the "%(prop_name)s" meta property on model "%(app_label)s.%(model_name)s".'

	

	
error_vars = {'model_name': 'model_name', 'prop_name': 'prop_name'}

	

	
__init__(model_name, prop_name, new_value)

	Initialize the mutation.

	Parameters:

	
	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model to change meta properties on.

	prop_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the property to change.

	new_value (object [https://docs.python.org/3/library/functions.html#object]) – The new value for the property.

	
get_hint_params()

	Return parameters for the mutation’s hinted evolution.

	Returns:

	A list of parameter strings to pass to the mutation’s constructor
in a hinted evolution.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
simulate(simulation)

	Simulate the mutation.

This will alter the database schema to change metadata on the specified
model.

	Parameters:

	simulation (Simulation) – The state for the simulation.

	Raises:

	django_evolution.errors.SimulationFailure – The simulation failed. The reason is in the exception’s
 message.

	
mutate(mutator, model)

	Schedule a model meta property change on the mutator.

This will instruct the mutator to change a meta property on a model. It
will be scheduled and later executed on the database, if not optimized
out.

	Parameters:

	
	mutator (django_evolution.mutators.ModelMutator) – The mutator to perform an operation on.

	model (MockModel) – The model being mutated.

django_evolution.mutations.delete_application

Mutation that deletes an application.

New in version 2.2.

Classes

	DeleteApplication()

	A mutation that deletes an application.

	
class django_evolution.mutations.delete_application.DeleteApplication

	Bases: BaseMutation

A mutation that deletes an application.

Changed in version 2.2: Moved into the django_evolution.mutations.delete_application
module.

	
simulation_failure_error = 'Cannot delete the application "%(app_label)s".'

	

	
simulate(simulation)

	Simulate the mutation.

This will alter the database schema to delete the specified
application.

	Parameters:

	simulation (Simulation) – The state for the simulation.

	Raises:

	django_evolution.errors.SimulationFailure – The simulation failed. The reason is in the exception’s
 message.

	
mutate(mutator)

	Schedule an application deletion on the mutator.

This will instruct the mutator to delete an application, if it exists.
It will be scheduled and later executed on the database, if not
optimized out.

	Parameters:

	mutator (django_evolution.mutators.AppMutator) – The mutator to perform an operation on.

	
is_mutable(*args, **kwargs)

	Return whether the mutation can be applied to the database.

This will always return true. The mutation will safely handle the
application no longer being around.

	Parameters:

	
	*args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], unused) – Positional arguments passed to the function.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], unused) – Keyword arguments passed to the function.

	Returns:

	True, always.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

django_evolution.mutations.delete_field

Mutation for deleting fields from a model.

New in version 2.2.

Classes

	DeleteField(model_name, field_name)

	A mutation that deletes a field from a model.

	
class django_evolution.mutations.delete_field.DeleteField(model_name, field_name)

	Bases: BaseModelFieldMutation

A mutation that deletes a field from a model.

Changed in version 2.2: Moved into the django_evolution.mutations.delete_field
module.

	
simulation_failure_error = 'Cannot delete the field "%(field_name)s" on model "%(app_label)s.%(model_name)s".'

	

	
get_hint_params()

	Return parameters for the mutation’s hinted evolution.

	Returns:

	A list of parameter strings to pass to the mutation’s constructor
in a hinted evolution.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
simulate(simulation)

	Simulate the mutation.

This will alter the database schema to remove the specified field,
modifying meta fields (unique_together) if necessary.

It will also check to make sure this is not a primary key and that
the field exists.

	Parameters:

	simulation (Simulation) – The state for the simulation.

	Raises:

	django_evolution.errors.SimulationFailure – The simulation failed. The reason is in the exception’s
 message.

	
mutate(mutator, model)

	Schedule a field deletion on the mutator.

This will instruct the mutator to perform a deletion of a field on
a model. It will be scheduled and later executed on the database, if
not optimized out.

	Parameters:

	
	mutator (django_evolution.mutators.ModelMutator) – The mutator to perform an operation on.

	model (MockModel) – The model being mutated.

django_evolution.mutations.delete_model

Mutation that deletes a model.

New in version 2.2.

Classes

	DeleteModel(model_name)

	A mutation that deletes a model.

	
class django_evolution.mutations.delete_model.DeleteModel(model_name)

	Bases: BaseModelMutation

A mutation that deletes a model.

Changed in version 2.2: Moved into the django_evolution.mutations.delete_model
module.

	
simulation_failure_error = 'Cannot delete the model "%(app_label)s.%(model_name)s".'

	

	
get_hint_params()

	Return parameters for the mutation’s hinted evolution.

	Returns:

	A list of parameter strings to pass to the mutation’s constructor
in a hinted evolution.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
simulate(simulation)

	Simulate the mutation.

This will alter the database schema to delete the specified model.

	Parameters:

	simulation (Simulation) – The state for the simulation.

	Raises:

	django_evolution.errors.SimulationFailure – The simulation failed. The reason is in the exception’s
 message.

	
mutate(mutator, model)

	Schedule a model deletion on the mutator.

This will instruct the mutator to delete a model. It will be scheduled
and later executed on the database, if not optimized out.

	Parameters:

	
	mutator (django_evolution.mutators.ModelMutator) – The mutator to perform an operation on.

	model (MockModel) – The model being mutated.

django_evolution.mutations.move_to_django_migrations

Mutation that moves an app to Django migrations.

New in version 2.2.

Classes

	MoveToDjangoMigrations([mark_applied])

	A mutation that uses Django migrations for an app's future upgrades.

	
class django_evolution.mutations.move_to_django_migrations.MoveToDjangoMigrations(mark_applied=['0001_initial'])

	Bases: BaseUpgradeMethodMutation

A mutation that uses Django migrations for an app’s future upgrades.

This directs this app to evolve only up until this mutation, and to then
hand any future schema changes over to Django’s migrations.

Once this mutation is used, no further mutations can be added for the app.

Changed in version 2.2: Moved into the
django_evolution.mutations.move_to_django_migrations module.

	
__init__(mark_applied=['0001_initial'])

	Initialize the mutation.

	Parameters:

	mark_applied (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The list of migrations to mark as applied. Each of these
should have been covered by the initial table or subsequent
evolutions. By default, this covers the 0001_initial
migration.

	
generate_dependencies(app_label, **kwargs)

	Return automatic dependencies for the parent evolution.

This will generate a dependency forcing this evolution to apply
before the migrations that are marked as applied, ensuring that
subsequent migrations are applied in the correct order.

New in version 2.1.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the app containing this mutation.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments, for future use.

	Returns:

	A dictionary of dependencies. This may have zero or more of the
following keys:

	before_migrations

	after_migrations

	before_evolutions

	after_evolutions

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
simulate(simulation)

	Simulate the mutation.

This will alter the app’s signature to mark it as being handled by
Django migrations.

	Parameters:

	simulation (Simulation) – The simulation being performed.

django_evolution.mutations.rename_app_label

Mutation that renames the app label for an application.

New in version 2.2.

Classes

	RenameAppLabel(old_app_label, new_app_label)

	A mutation that renames the app label for an application.

	
class django_evolution.mutations.rename_app_label.RenameAppLabel(old_app_label, new_app_label, legacy_app_label=None, model_names=None)

	Bases: BaseMutation

A mutation that renames the app label for an application.

Changed in version 2.2: Moved into the django_evolution.mutations.rename_app_label
module.

	
__init__(old_app_label, new_app_label, legacy_app_label=None, model_names=None)

	

	
get_hint_params()

	Return parameters for the mutation’s hinted evolution.

	Returns:

	A list of parameter strings to pass to the mutation’s constructor
in a hinted evolution.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
is_mutable(app_label, project_sig, database_state, database)

	Return whether the mutation can be applied to the database.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label for the Django application to be mutated.

	project_sig (dict [https://docs.python.org/3/library/stdtypes.html#dict], unused) – The project’s schema signature.

	database_state (django_evolution.db.state.DatabaseState, unused) – The database state.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database the operation would be performed on.

	Returns:

	True if the mutation can run. False if it cannot.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
simulate(simulation)

	Simulate the mutation.

This will alter the signature to make any changes needed for the
application’s evolution storage.

	
mutate(mutator)

	Schedule an app mutation on the mutator.

This will inform the mutator of the new app label, for use in any
future operations.

	Parameters:

	mutator (django_evolution.mutators.AppMutator) – The mutator to perform an operation on.

django_evolution.mutations.rename_field

Mutation that renames a field on a model.

New in version 2.2.

Classes

	RenameField(model_name, old_field_name, ...)

	A mutation that renames a field on a model.

	
class django_evolution.mutations.rename_field.RenameField(model_name, old_field_name, new_field_name, db_column=None, db_table=None)

	Bases: BaseModelFieldMutation

A mutation that renames a field on a model.

Changed in version 2.2: Moved into the django_evolution.mutations.rename_field
module.

	
simulation_failure_error = 'Cannot rename the field "%(field_name)s" on model "%(app_label)s.%(model_name)s".'

	

	
__init__(model_name, old_field_name, new_field_name, db_column=None, db_table=None)

	Initialize the mutation.

	Parameters:

	
	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model to add the field to.

	old_field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The old (existing) name of the field.

	new_field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The new name for the field.

	db_column (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The explicit column name to set for the field.

	db_table (object [https://docs.python.org/3/library/functions.html#object], optional) – The explicit table name to use, if specifying a
ManyToManyField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ManyToManyField].

	
get_hint_params()

	Return parameters for the mutation’s hinted evolution.

	Returns:

	A list of parameter strings to pass to the mutation’s constructor
in a hinted evolution.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
simulate(simulation)

	Simulate the mutation.

This will alter the database schema to rename the specified field.

	Parameters:

	simulation (Simulation) – The state for the simulation.

	Raises:

	django_evolution.errors.SimulationFailure – The simulation failed. The reason is in the exception’s
 message.

	
mutate(mutator, model)

	Schedule a field rename on the mutator.

This will instruct the mutator to rename a field on a model. It will be
scheduled and later executed on the database, if not optimized out.

	Parameters:

	
	mutator (django_evolution.mutators.ModelMutator) – The mutator to perform an operation on.

	model (MockModel) – The model being mutated.

django_evolution.mutations.rename_model

Mutation that renames a model.

New in version 2.2.

Classes

	RenameModel(old_model_name, new_model_name, ...)

	A mutation that renames a model.

	
class django_evolution.mutations.rename_model.RenameModel(old_model_name, new_model_name, db_table)

	Bases: BaseModelMutation

A mutation that renames a model.

Changed in version 2.2: Moved into the django_evolution.mutations.rename_model
module.

	
simulation_failure_error = 'Cannot rename the model "%(app_label)s.%(model_name)s".'

	

	
__init__(old_model_name, new_model_name, db_table)

	Initialize the mutation.

	Parameters:

	
	old_model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The old (existing) name of the model to rename.

	new_model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The new name for the model.

	db_table (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The table name in the database for this model.

	
get_hint_params()

	Return parameters for the mutation’s hinted evolution.

	Returns:

	A list of parameter strings to pass to the mutation’s constructor
in a hinted evolution.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
simulate(simulation)

	Simulate the mutation.

This will alter the database schema to rename the specified model.

	Parameters:

	simulation (Simulation) – The state for the simulation.

	Raises:

	django_evolution.errors.SimulationFailure – The simulation failed. The reason is in the exception’s
 message.

	
mutate(mutator, model)

	Schedule a model rename on the mutator.

This will instruct the mutator to rename a model. It will be scheduled
and later executed on the database, if not optimized out.

	Parameters:

	
	mutator (django_evolution.mutators.ModelMutator) – The mutator to perform an operation on.

	model (MockModel) – The model being mutated.

django_evolution.mutations.sql_mutation

Mutation for executing SQL statements.

New in version 2.2.

Classes

	SQLMutation(tag, sql[, update_func])

	A mutation that executes SQL on the database.

	
class django_evolution.mutations.sql_mutation.SQLMutation(tag, sql, update_func=None)

	Bases: BaseMutation

A mutation that executes SQL on the database.

Unlike most mutations, this one is largely database-dependent. It allows
arbitrary SQL to be executed. It’s recommended that the execution does
not modify the schema of a table (unless it’s highly database-specific with
no counterpart in Django Evolution), but rather is limited to things like
populating data.

SQL statements cannot be optimized. Any scheduled database operations
prior to the SQL statement will be executed without any further
optimization. This can lead to longer database evolution times.

Changed in version 2.2: Moved into the django_evolution.mutations.sql_mutation
module.

	
__init__(tag, sql, update_func=None)

	Initialize the mutation.

	Parameters:

	
	tag (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – A unique tag identifying this SQL operation.

	sql (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The SQL to execute.

	update_func (callable, optional) – A function to call to simulate updating the database signature.
This is required for simulate() to work.

	
get_hint_params()

	Return parameters for the mutation’s hinted evolution.

	Returns:

	A list of parameter strings to pass to the mutation’s constructor
in a hinted evolution.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
simulate(simulation)

	Simulate a mutation for an application.

This will run the update_func provided when instantiating
the mutation, passing it app_label and project_sig. It should
then modify the signature to match what the SQL statement would do.

	Parameters:

	simulation (Simulation) – The state for the simulation.

	Raises:

	
	django_evolution.errors.CannotSimulate – update_func was not provided or was not a function.

	django_evolution.errors.SimulationFailure – The simulation failed. The reason is in the exception’s
 message. This would be run by update_func.

	
mutate(mutator)

	Schedule a database mutation on the mutator.

This will instruct the mutator to execute the SQL for an app.

	Parameters:

	mutator (django_evolution.mutators.AppMutator) – The mutator to perform an operation on.

	Raises:

	django_evolution.errors.EvolutionNotImplementedError – The configured mutation is not supported on this type of
 database.

	
is_mutable(*args, **kwargs)

	Return whether the mutation can be applied to the database.

	Parameters:

	
	*args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], unused) – Unused positional arguments.

	**kwargs (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], unused) – Unused positional arguments.

	Returns:

	True, always.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

django_evolution.serialization

Serialization and deserialization.

These classes are responsible for converting objects/values to signature data
or to Python code (for evolution hints), and for converting signature data back
to objects.

The classes in this file are considered private API. The only public API is:

	deserialize_from_python()

	serialize_to_signature()

	serialize_to_python()

New in version 2.2.

Functions

	deserialize_from_signature(payload)

	Deserialize a value from the signature.

	serialize_to_python(value)

	Serialize a value to a Python code string.

	serialize_to_signature(value)

	Serialize a value to the signature.

Classes

	BaseIterableSerialization()

	Base class for iterable types.

	BaseSerialization()

	Base class for serialization.

	ClassSerialization()

	Base class for serialization for classes.

	CombinedExpressionSerialization()

	Base class for serialization for CombinedExpression objects.

	DeconstructedSerialization()

	Base class for serialization for objects supporting deconstruction.

	DictSerialization()

	Base class for serialization for dictionaries.

	EnumSerialization()

	Serialization for enums.

	ListSerialization()

	Base class for serialization for lists.

	PlaceholderSerialization()

	Base class for serialization for a placeholder object.

	PrimitiveSerialization()

	Base class for serialization for Python primitives.

	QSerialization()

	Base class for serialization for Q objects.

	SetSerialization()

	Base class for serialization for sets.

	StringSerialization()

	Base class for serialization for strings.

	TupleSerialization()

	Base class for serialization for tuples.

	
class django_evolution.serialization.BaseSerialization

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for serialization.

Subclasses should override the methods within this class to provide
serialization and deserialization logic specific to one or more types.

New in version 2.2.

	
classmethod serialize_to_signature(value)

	Serialize a value to JSON-compatible signature data.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]) – The value to serialize.

	Returns:

	The resulting signature data.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
classmethod serialize_to_python(value)

	Serialize a value to a Python code string.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]) – The value to serialize.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod deserialize_from_signature(payload)

	Deserialize signature data to a value.

	Parameters:

	payload (object [https://docs.python.org/3/library/functions.html#object]) – The payload to deserialize.

	Returns:

	The resulting value.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]

	
classmethod deserialize_from_deconstructed(type_cls, args, kwargs)

	Deserialize an object from deconstructed object information.

	Parameters:

	
	type_cls (type [https://docs.python.org/3/library/functions.html#type]) – The type of object to construct.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The positional arguments passed to the constructor.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The keyword arguments passed to the constructor.

	Returns:

	The resulting object.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
class django_evolution.serialization.BaseIterableSerialization

	Bases: BaseSerialization

Base class for iterable types.

This will handle the signature-related serialization/deserialization
automatically, based on iterable_type.

New in version 2.2.

	
item_type = None

	The type used to store items.

	Type:

	type [https://docs.python.org/3/library/functions.html#type]

	
classmethod serialize_to_signature(value)

	Serialize a value to JSON-compatible signature data.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]) – The value to serialize.

	Returns:

	The resulting signature data.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
classmethod deserialize_from_signature(payload)

	Deserialize signature data to a value.

	Parameters:

	payload (object [https://docs.python.org/3/library/functions.html#object]) – The payload to deserialize.

	Returns:

	The resulting value.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]

	
class django_evolution.serialization.PrimitiveSerialization

	Bases: BaseSerialization

Base class for serialization for Python primitives.

This will wrap simple values, deep-copying them when storing as signature
data, returning a repr() [https://docs.python.org/3/library/functions.html#repr] result when converting to Python code,
and using the value as-is when deserializing.

New in version 2.2.

	
classmethod serialize_to_signature(value)

	Serialize a value to JSON-compatible signature data.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object]) – The value to serialize.

	Returns:

	A deep copy of the provided value.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
classmethod serialize_to_python(value)

	Serialize a value to a Python code string.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]) – The value to serialize.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod deserialize_from_signature(payload)

	Deserialize signature data to a value.

This will just return the value as-is.

	Parameters:

	payload (object [https://docs.python.org/3/library/functions.html#object]) – The payload to deserialize.

	Returns:

	The resulting value.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]

	
class django_evolution.serialization.ClassSerialization

	Bases: BaseSerialization

Base class for serialization for classes.

This is able to serialize a class name to Python. It cannot be used for
signature data.

New in version 2.2.

	
classmethod serialize_to_python(value)

	Serialize a value to a Python code string.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]) – The value to serialize.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.serialization.DictSerialization

	Bases: BaseSerialization

Base class for serialization for dictionaries.

This will be used for plain dict [https://docs.python.org/3/library/stdtypes.html#dict] instances and for
collections.OrderedDict.

New in version 2.2.

	
classmethod serialize_to_signature(value)

	Serialize a dictionary to JSON-compatible signature data.

	Parameters:

	value (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary to serialize.

	Returns:

	The resulting dictionary.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
classmethod serialize_to_python(value)

	Serialize a dictionary to a Python code string.

	Parameters:

	value (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary to serialize.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod deserialize_from_signature(payload)

	Deserialize dictionary signature data to a value.

	Parameters:

	payload (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The payload to deserialize.

	Returns:

	The resulting value.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class django_evolution.serialization.EnumSerialization

	Bases: BaseSerialization

Serialization for enums.

New in version 2.2.

	
classmethod serialize_to_signature(value)

	Serialize a value to JSON-compatible signature data.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object]) – The value to serialize.

	Returns:

	A deep copy of the provided value.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
classmethod serialize_to_python(value)

	Serialize an enum value to a Python code string.

	Parameters:

	value (enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]) – The enum value to serialize.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod deserialize_from_signature(payload)

	Deserialize signature data to a value.

This will just return the value as-is.

	Parameters:

	payload (object [https://docs.python.org/3/library/functions.html#object]) – The payload to deserialize.

	Returns:

	The resulting value.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]

	
class django_evolution.serialization.ListSerialization

	Bases: BaseIterableSerialization

Base class for serialization for lists.

New in version 2.2.

	
item_type

	alias of list [https://docs.python.org/3/library/stdtypes.html#list]

	
classmethod serialize_to_python(value)

	Serialize a list to a Python code string.

	Parameters:

	value (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list to serialize.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.serialization.TupleSerialization

	Bases: BaseIterableSerialization

Base class for serialization for tuples.

New in version 2.2.

	
item_type

	alias of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
classmethod serialize_to_python(value)

	Serialize a tuple to a Python code string.

	Parameters:

	value (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The tuple to serialize.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.serialization.SetSerialization

	Bases: BaseIterableSerialization

Base class for serialization for sets.

New in version 2.2.

	
item_type

	alias of set [https://docs.python.org/3/library/stdtypes.html#set]

	
classmethod serialize_to_python(value)

	Serialize a set to a Python code string.

	Parameters:

	value (set [https://docs.python.org/3/library/stdtypes.html#set]) – The set to serialize.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.serialization.StringSerialization

	Bases: PrimitiveSerialization

Base class for serialization for strings.

This will encode to a string, and ensure the results are consistent
across Python 2 and 3.

New in version 2.2.

	
classmethod serialize_to_signature(value)

	Serialize a string to JSON-compatible string.

	Parameters:

	value (bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The string to serialize. If a byte string, it’s expected to
contain UTF-8 data.

	Returns:

	The resulting string.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod serialize_to_python(value)

	Serialize a string to a Python code string.

	Parameters:

	value (bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The string to serialize. If a byte string, it’s expected to
contain UTF-8 data.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.serialization.DeconstructedSerialization

	Bases: BaseSerialization

Base class for serialization for objects supporting deconstruction.

This is used for Django objects that support a deconstruct() method.
It will convert to/from deconstructed signature data, and provide a
suitable representation in Python.

New in version 2.2.

	
classmethod serialize_to_signature(value)

	Serialize a value to JSON-compatible signature data.

This will deconstruct the object and return a dictionary containing
the deconstructed information and a flag noting that it must be
reconstructed.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]) – The value to serialize.

	Returns:

	The resulting signature data.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
classmethod serialize_to_python(value)

	Serialize an object to a Python code string.

This will generate code that constructs an instance of the object.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object]) – The object to serialize.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod deserialize_from_signature(payload)

	Deserialize deconstructed dictionary signature data to an object.

This will attempt to re-construct an object from the deconstructed
signature data. This may fail if there is any issue looking up or
instantiating the object.

	Parameters:

	payload (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The payload to deserialize.

	Returns:

	The resulting value.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	
	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – An unexpected error occurred when instantiating the object.

	ImportError [https://docs.python.org/3/library/exceptions.html#ImportError] – The class specified in the signature data could not be
 imported.

	
class django_evolution.serialization.PlaceholderSerialization

	Bases: BaseSerialization

Base class for serialization for a placeholder object.

New in version 2.2.

	
classmethod serialize_to_python(value)

	Serialize a placeholder object to a Python code string.

	Parameters:

	value (django_evolution.placeholders.BasePlaceholder) – The object to serialize.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.serialization.CombinedExpressionSerialization

	Bases: DeconstructedSerialization

Base class for serialization for CombinedExpression objects.

This ensures a consistent representation of
django.db.models.CombinedExpression objects across all
supported versions of Django.

Note that while this can technically be used in version of Django prior
to 2.0, many of the objects nested within won’t be supported. In practice,
database features really start to make use of this in a way that impacts
serialization code in Django 2.0 and higher.

New in version 2.2.

	
classmethod serialize_to_python(value)

	Serialize a CombinedExpression object to a Python code string.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object]) – The object to serialize.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.serialization.QSerialization

	Bases: DeconstructedSerialization

Base class for serialization for Q objects.

This ensures a consistent representation of django.db.models.Q [https://docs.djangoproject.com/en/3.1/ref/models/querysets/#django.db.models.Q]
objects across all supported versions of Django.

Django 1.7 through 3.1 encode the data in a different form than 3.2+.
This ensures serialized data in a form closer to 3.2+’s version, while
providing compatibility with older versions.

New in version 2.2.

	
child_separators = {'AND': ' & ', 'OR': ' | '}

	

	
classmethod serialize_to_signature(q)

	Serialize a Q object to JSON-compatible signature data.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]) – The value to serialize.

	Returns:

	The resulting signature data.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
classmethod serialize_to_python(value)

	Serialize a Q object to a Python code string.

This will generate code that constructs an instance of the object,
handling negation, AND/OR connections, and children.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object]) – The object to serialize.

	Returns:

	The resulting Python code.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod deserialize_from_deconstructed(type_cls, args, kwargs)

	Deserialize an object from deconstructed object information.

	Parameters:

	
	type_cls (type [https://docs.python.org/3/library/functions.html#type]) – The type of object to construct.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The positional arguments passed to the constructor.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The keyword arguments passed to the constructor.

	Returns:

	The resulting object.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
django_evolution.serialization.serialize_to_signature(value)

	Serialize a value to the signature.

New in version 2.2.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]) – The value to serialize.

	Returns:

	The resulting JSON-serializable data.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
django_evolution.serialization.serialize_to_python(value)

	Serialize a value to a Python code string.

New in version 2.2.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]) – The value to serialize.

	Returns:

	The resulting Python code string.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.serialization.deserialize_from_signature(payload)

	Deserialize a value from the signature.

New in version 2.2.

	Parameters:

	payload (object [https://docs.python.org/3/library/functions.html#object]) – The payload to deserialize.

	Returns:

	The resulting deserialized value.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object] or type [https://docs.python.org/3/library/functions.html#type]

	Raises:

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – An unexpected error occurred when deserializing. This is specific
 to the type of deserializer.

django_evolution.signals

Signals for monitoring the evolution process.

Module Attributes

	evolving

	Emitted when an Evolver begins evolving.

	evolved

	Emitted when an Evolver finishes evolving.

	evolving_failed

	Emitted when an Evolver fails evolving.

	applying_evolution

	Emitted when an evolution is about to be applied to an app.

	applied_evolution

	Emitted when an evolution has been applied to an app.

	applying_migration

	Emitted when a migration is about to be applied to an app.

	applied_migration

	Emitted when a migration has been applied to an app.

	creating_models

	Emitted when creating new models for an app outside of a migration.

	created_models

	Emitted when finished creating new models for an app outside of a migration.

	
django_evolution.signals.evolving = <django.dispatch.dispatcher.Signal object>

	Emitted when an Evolver begins evolving.

	
django_evolution.signals.evolved = <django.dispatch.dispatcher.Signal object>

	Emitted when an Evolver finishes evolving.

	
django_evolution.signals.evolving_failed = <django.dispatch.dispatcher.Signal object>

	Emitted when an Evolver fails evolving.

	Parameters:

	exception (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – The exception raised when evolution failed.

	
django_evolution.signals.applying_evolution = <django.dispatch.dispatcher.Signal object>

	Emitted when an evolution is about to be applied to an app.

Changed in version 2.1: Added the evolutions argument.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the application being applied.

	task (django_evolution.evolve.EvolveAppTask) – The task evolving the app.

	evolutions (list [https://docs.python.org/3/library/stdtypes.html#list] of django_evolution.models.Evolution) – The list of evolutions that will be applied.

	
django_evolution.signals.applied_evolution = <django.dispatch.dispatcher.Signal object>

	Emitted when an evolution has been applied to an app.

Changed in version 2.1: Added the evolutions argument.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the application being applied.

	task (django_evolution.evolve.EvolveAppTask) – The task that evolved the app.

	evolutions (list [https://docs.python.org/3/library/stdtypes.html#list] of django_evolution.models.Evolution) – The list of evolutions that were applied.

	
django_evolution.signals.applying_migration = <django.dispatch.dispatcher.Signal object>

	Emitted when a migration is about to be applied to an app.

	Parameters:

	migration (django.db.migrations.migration.Migration) – The migration that’s being applied.

	
django_evolution.signals.applied_migration = <django.dispatch.dispatcher.Signal object>

	Emitted when a migration has been applied to an app.

	Parameters:

	migration (django.db.migrations.migration.Migration) – The migration that was applied.

	
django_evolution.signals.creating_models = <django.dispatch.dispatcher.Signal object>

	Emitted when creating new models for an app outside of a migration.

Note

There’s no guarantee that a created_models will be emitted
in-between two creating_models.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The app label for the models being created.

	model_names (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The list of models being created.

	
django_evolution.signals.created_models = <django.dispatch.dispatcher.Signal object>

	Emitted when finished creating new models for an app outside of a migration.

Note

There’s no guarantee that a creating_models will be emitted
in-between two created_models.

	Parameters:

	
	migration (django.db.migrations.migration.Migration) – The migration that was applied.

	model_names (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The list of models that were created.

django_evolution.signature

Classes for working with stored evolution state signatures.

These provide a way to work with the state of Django apps and their models in
an abstract way, and to deserialize from or serialize to a string. Signatures
can also be diffed, showing the changes between an older and a newer version
in order to help see how the current database’s signature differs from an older
stored version.

Serialized versions of signatures are versioned, and the signature classes
handle loading and saving as any version. However, state may be lost when
downgrading a signature.

The following versions are currently supported:

	Version 1:
	The original version of the signature, used up until Django Evolution
1.0. This is in the form of:

{
 '__version__': 1,
 '<legacy_app_label>': {
 '<model_name>': {
 'meta': {
 'db_table': '<table name>',
 'db_tablespace': '<tablespace>',
 'index_together': [
 ('<colname>', ...),
 ...
],
 'indexes': [
 {
 'name': '<name>',
 'fields': ['<colname>', ...],
 },
 ...
],
 'pk_column': '<colname>',
 'unique_together': [
 ('<colname>', ...),
 ...
],
 '__unique_together_applied': True|False,
 },
 'fields': {
 'field_type': <class>,
 'related_model': '<app_label>.<class_name>',
 '<field_attr>': <value>,
 ...
 },
 },
 ...
 },
 ...
}

	Version 2:
	Introduced in Django Evolution 2.0. This differs from version 1 in
that it’s deeper, with explicit namespaces for apps, models, and
field attributes that can exist alongside metadata keys. This is
in the form of:

{
 '__version__': 2,
 'apps': {
 '<app_label>': {
 'legacy_app_label': '<legacy app_label>',
 'upgrade_method': 'migrations'|'evolutions'|None,
 'applied_migrations' ['<migration name>', ...],
 'models': {
 '<model_name>': {
 'meta': {
 'constraints': [
 {
 'name': '<name>',
 'type': '<class_path>',
 'attrs': {
 '<attr_name>': <value>,
 },
 },
 ...
],
 'db_table': '<table name>',
 'db_tablespace': '<tablespace>',
 'index_together': [
 ('<colname>', ...),
 ...
],
 'indexes': [
 {
 'name': '<name>',
 'fields': ['<colname>', ...],
 'expressions': [
 {<deconstructed>},
 ...
],
 'attrs': {
 'condition': {<deconstucted>},
 'db_tablespace': '<string>',
 'include': ['<name>', ...],
 'opclasses': ['<name>', ...],
 },
 },
 ...
],
 'pk_column': '<colname>',
 'unique_together': [
 ('<colname>', ...),
 ...
],
 '__unique_together_applied': True|False,
 },
 'fields': {
 'type': '<class_path>',
 'related_model': '<app_label>.<class_name>',
 'attrs': {
 '<field_attr_name>': <value>,
 ...
 },
 },
 },
 ...
 },
 },
 ...
 },
}

Module Attributes

	LATEST_SIGNATURE_VERSION

	The latest signature version.

Functions

	validate_sig_version(sig_version)

	Validate that a signature version is supported.

Classes

	AppSignature(app_id[, legacy_app_label, ...])

	Signature information for an application.

	BaseSignature()

	Base class for a signature.

	ConstraintSignature(name, constraint_type[, ...])

	Signature information for a explicit constraint.

	FieldSignature(field_name, field_type[, ...])

	Signature information for a field.

	IndexSignature(fields[, name, expressions, ...])

	Signature information for an explicit index.

	ModelSignature(model_name, table_name[, ...])

	Signature information for a model.

	ProjectSignature()

	Signature information for a project.

	
django_evolution.signature.LATEST_SIGNATURE_VERSION = 2

	The latest signature version.

	
class django_evolution.signature.BaseSignature

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for a signature.

	
classmethod deserialize(sig_dict, sig_version, database='default')

	Deserialize the signature.

	Parameters:

	
	sig_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary containing signature data.

	sig_version (int [https://docs.python.org/3/library/functions.html#int]) – The stored signature version.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database.

	Returns:

	The resulting signature class.

	Return type:

	BaseSignature

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
diff(old_sig)

	Diff against an older signature.

The resulting data is dependent on the type of signature.

	Parameters:

	old_sig (BaseSignature) – The old signature to diff against.

	Returns:

	The resulting diffed data.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
clone()

	Clone the signature.

	Returns:

	The cloned signature.

	Return type:

	BaseSignature

	
serialize(sig_version=2)

	Serialize data to a signature dictionary.

	Parameters:

	sig_version (int [https://docs.python.org/3/library/functions.html#int], optional) – The signature version to serialize as. This always defaults
to the latest.

	Returns:

	The serialized data.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
__eq__(other)

	Return whether two signatures are equal.

	Parameters:

	other (BaseSignature) – The other signature.

	Returns:

	True if the project signatures are equal. False if they
are not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__ne__(other)

	Return whether two signatures are not equal.

	Parameters:

	other (BaseSignature) – The other signature.

	Returns:

	True if the project signatures are not equal. False if they
are equal.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__repr__()

	Return a string representation of the signature.

	Returns:

	A string representation of the signature.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__hash__ = None

	

	
class django_evolution.signature.ProjectSignature

	Bases: BaseSignature

Signature information for a project.

Projects are the top-level signature deserialized from and serialized to
a Version model. They contain a
signature version and information on all the applications tracked for the
project.

	
classmethod from_database(database)

	Create a project signature from the database.

This will look up all the applications registered in Django, turning
each of them into a AppSignature stored in this
project signature.

	Parameters:

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.

	Returns:

	The project signature based on the current application and
database state.

	Return type:

	ProjectSignature

	
classmethod deserialize(project_sig_dict, database='default')

	Deserialize a serialized project signature.

	Parameters:

	
	project_sig_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary containing project signature data.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database.

	Returns:

	The resulting signature instance.

	Return type:

	ProjectSignature

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version found in the dictionary is unsupported.

	
__init__()

	Initialize the signature.

	
property app_sigs

	The application signatures in the project signature.

	
add_app(app, database)

	Add an application to the project signature.

This will construct an AppSignature and add it
to the project signature.

	Parameters:

	
	app (module) – The application module to create the signature from.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The database name.

	
add_app_sig(app_sig)

	Add an application signature to the project signature.

	Parameters:

	app_sig (AppSignature) – The application signature to add.

	
remove_app_sig(app_id)

	Remove an application signature from the project signature.

	Parameters:

	app_id (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the application signature to remove.

	Raises:

	django_evolution.errors.MissingSignatureError – The application ID does not represent a known application
 signature.

	
get_app_sig(app_id, required=False)

	Return an application signature with the given ID.

	Parameters:

	
	app_id (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the application signature. This may be a modern
app label, or a legacy app label.

	required (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the app signature must be present. If True and
the signature is missing, this will raise an exception.

	Returns:

	The application signature, if found. If no application signature
matches the ID, None will be returned.

	Return type:

	AppSignature

	Raises:

	django_evolution.errors.MissingSignatureError – The application signature was not found, and required was
 True.

	
diff(old_project_sig)

	Diff against an older project signature.

This will return a dictionary of changes between two project
signatures.

	Parameters:

	old_project_sig (ProjectSignature) – The old project signature to diff against.

	Returns:

	A dictionary in the following form:

{
 'changed': {
 <app ID>: <AppSignature diff>,
 ...
 },
 'deleted': [
 <app ID>: [
 <model name>,
 ...
],
 ...
],
}

Any key lacking a value will be ommitted from the diff.

	Return type:

	collections.OrderedDict

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – The old signature provided was not a
 ProjectSignature.

	
clone()

	Clone the signature.

	Returns:

	The cloned signature.

	Return type:

	ProjectSignature

	
serialize(sig_version=2)

	Serialize project data to a signature dictionary.

	Parameters:

	sig_version (int [https://docs.python.org/3/library/functions.html#int], optional) – The signature version to serialize as. This always defaults
to the latest.

	Returns:

	The serialized data.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
__eq__(other)

	Return whether two project signatures are equal.

	Parameters:

	other (ProjectSignature) – The other project signature.

	Returns:

	True if the project signatures are equal. False if they
are not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__repr__()

	Return a string representation of the signature.

	Returns:

	A string representation of the signature.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__hash__ = None

	

	
class django_evolution.signature.AppSignature(app_id, legacy_app_label=None, upgrade_method=None, applied_migrations=None)

	Bases: BaseSignature

Signature information for an application.

Application signatures store information on a Django application and all
models registered under that application.

	
classmethod from_app(app, database)

	Create an application signature from an application.

This will store data on the application and create a
ModelSignature for each of the application’s models.

	Parameters:

	
	app (module) – The application module to create the signature from.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.

	Returns:

	The application signature based on the application.

	Return type:

	AppSignature

	
classmethod deserialize(app_id, app_sig_dict, sig_version, database='default')

	Deserialize a serialized application signature.

	Parameters:

	
	app_id (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The application ID.

	app_sig_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary containing application signature data.

	sig_version (int [https://docs.python.org/3/library/functions.html#int]) – The version of the serialized signature data.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database.

	Returns:

	The resulting signature instance.

	Return type:

	AppSignature

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
__init__(app_id, legacy_app_label=None, upgrade_method=None, applied_migrations=None)

	Initialize the signature.

	Parameters:

	
	app_id (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the application. This will be the application label.
On modern versions of Django, this may differ from the
legacy app label.

	legacy_app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The legacy label for the application. This is based on the
module name.

	upgrade_method (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The upgrade method used for this application. This must be
a value from
UpgradeMethod, or
None.

	applied_migrations (set [https://docs.python.org/3/library/stdtypes.html#set] of unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The migration names that are applied as of this signature.

	
property model_sigs

	The model signatures stored on the application signature.

	
property applied_migrations

	The set of migration names applied to the app.

	Type:

	set [https://docs.python.org/3/library/stdtypes.html#set] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
is_empty()

	Return whether the application signature is empty.

An empty application signature contains no models.

	Returns:

	True if the signature is empty. False if it still has
models in it.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
add_model(model)

	Add a model to the application signature.

This will construct a ModelSignature and add it to this
application signature.

	Parameters:

	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model to create the signature from.

	
add_model_sig(model_sig)

	Add a model signature to the application signature.

	Parameters:

	model_sig (ModelSignature) – The model signature to add.

	
remove_model_sig(model_name)

	Remove a model signature from the application signature.

	Parameters:

	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model.

	Raises:

	django_evolution.errors.MissingSignatureError – The model name does not represent a known model signature.

	
clear_model_sigs()

	Clear all model signatures from the application signature.

	
get_model_sig(model_name, required=False)

	Return a model signature for the given model name.

	Parameters:

	
	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model.

	required (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the model signature must be present. If True and
the signature is missing, this will raise an exception.

	Returns:

	The model signature, if found. If no model signature matches
the model name, None will be returned.

	Return type:

	ModelSignature

	Raises:

	django_evolution.errors.MissingSignatureError – The model signature was not found, and required was
 True.

	
diff(old_app_sig)

	Diff against an older application signature.

This will return a dictionary containing the differences between
two application signatures.

	Parameters:

	old_app_sig (AppSignature) – The old app signature to diff against.

	Returns:

	A dictionary in the following form:

{
 'changed': {
 '<model_name>': <ModelSignature diff>,
 ...
 },
 'deleted': [<list of deleted model names>],
 'meta_changed': {
 '<prop_name>': {
 'old': <old value>,
 'new': <new value>,
 },
 ...
 }
}

Any key lacking a value will be ommitted from the diff.

	Return type:

	collections.OrderedDict

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – The old signature provided was not an AppSignature.

	
clone()

	Clone the signature.

	Returns:

	The cloned signature.

	Return type:

	AppSignature

	
serialize(sig_version=2)

	Serialize application data to a signature dictionary.

	Parameters:

	sig_version (int [https://docs.python.org/3/library/functions.html#int], optional) – The signature version to serialize as. This always defaults
to the latest.

	Returns:

	The serialized data.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
__eq__(other)

	Return whether two application signatures are equal.

	Parameters:

	other (AppSignature) – The other application signature.

	Returns:

	True if the application signatures are equal. False if
they are not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__repr__()

	Return a string representation of the signature.

	Returns:

	A string representation of the signature.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__hash__ = None

	

	
class django_evolution.signature.ModelSignature(model_name, table_name, db_tablespace=None, index_together=[], pk_column=None, unique_together=[], unique_together_applied=False, db_table_comment=None)

	Bases: BaseSignature

Signature information for a model.

Model signatures store information on the model and include signatures for
its fields and _meta attributes.

	
classmethod from_model(model)

	Create a model signature from a model.

This will store data on the model and its _meta attributes, and
create a FieldSignature for each field.

	Parameters:

	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model to create a signature from.

	Returns:

	The signature based on the model.

	Return type:

	ModelSignature

	
classmethod deserialize(model_name, model_sig_dict, sig_version, database='default')

	Deserialize a serialized model signature.

	Parameters:

	
	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The model name.

	model_sig_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary containing model signature data.

	sig_version (int [https://docs.python.org/3/library/functions.html#int]) – The version of the serialized signature data.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database.

	Returns:

	The resulting signature instance.

	Return type:

	ModelSignature

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
__init__(model_name, table_name, db_tablespace=None, index_together=[], pk_column=None, unique_together=[], unique_together_applied=False, db_table_comment=None)

	Initialize the signature.

	Parameters:

	
	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model.

	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table in the database.

	db_tablespace (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The tablespace for the model. This is database-specific.

	index_together (list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – A list of fields that are indexed together.

	pk_column (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The column for the primary key.

	unique_together (list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – The list of fields that are unique together.

	unique_together_applied (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the unique_together value was applied to the
database, rather than simply stored in the signature.

New in version 2.1.3.

	db_table_comment (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The table comment applied to the database.

New in version 2.3.

	
property index_together

	A list of fields that are indexed together.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property unique_together

	A list of fields that are unique together.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property field_sigs

	The field signatures on the model signature.

	
add_field(field)

	Add a field to the model signature.

This will construct a FieldSignature and add it to this
model signature.

	Parameters:

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field to create the signature from.

	
add_field_sig(field_sig)

	Add a field signature to the model signature.

	Parameters:

	field_sig (FieldSignature) – The field signature to add.

	
remove_field_sig(field_name)

	Remove a field signature from the model signature.

	Parameters:

	field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field.

	Raises:

	django_evolution.errors.MissingSignatureError – The field name does not represent a known field signature.

	
get_field_sig(field_name, required=False)

	Return a field signature for the given field name.

	Parameters:

	
	field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field.

	required (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the model signature must be present. If True and
the signature is missing, this will raise an exception.

	Returns:

	The field signature, if found. If no field signature matches
the field name, None will be returned.

	Return type:

	FieldSignature

	Raises:

	django_evolution.errors.MissingSignatureError – The model signature was not found, and required was
 True.

	
add_constraint(constraint)

	Add an explicit constraint to the models.

This is only used on Django 2.2 or higher. It corresponds to the
model._meta.constraints
<django.db.models.Options.constraints attribute.

	Parameters:

	constraint (django.db.models.BaseConstraint) – The constraint to add.

	
add_constraint_sig(constraint_sig)

	Add an explicit constraint signature to the models.

This is only used on Django 2.2 or higher. It corresponds to the
model._meta.constraints
<django.db.models.Options.constraints attribute.

	Parameters:

	constraint_sig (ConstraintSignature) – The constraint signature to add.

	
add_index(index)

	Add an explicit index to the models.

This is only used on Django 1.11 or higher. It corresponds to the
model._meta.indexes <django.db.models.Options.indexes
attribute.

	Parameters:

	index (django.db.models.Index [https://docs.djangoproject.com/en/3.1/ref/models/indexes/#django.db.models.Index]) – The index to add.

	
add_index_sig(index_sig)

	Add an explicit index signature to the models.

This is only used on Django 1.11 or higher. It corresponds to the
model._meta.indexes <django.db.models.Options.indexes
attribute.

	Parameters:

	index_sig (IndexSignature) – The index signature to add.

	
apply_unique_together(unique_together)

	Record an applied unique_together change to the model.

This will store the new unique together value and set a flag indicating
it’s been applied to the database.

The flag exists to deal with a situation from old versions of
Django Evolution where the unique_together state was stored in the
signature but not applied to the database.

New in version 2.1.3.

	Parameters:

	unique_together (list [https://docs.python.org/3/library/stdtypes.html#list]) – The new unique_together value.

	
has_unique_together_changed(old_model_sig)

	Return whether unique_together has changed between signatures.

unique_together is considered to have changed under the following
conditions:

	They are different in value.

	Either the old or new is non-empty (even if equal) and evolving
from an older signature from Django Evolution pre-0.7, where
unique_together wasn’t applied to the database.

	Parameters:

	old_model_sig (ModelSignature) – The old model signature to compare against.

	Returns:

	True if the value has changed. False if they’re
considered equal for the purposes of evolution.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
diff(old_model_sig)

	Diff against an older model signature.

This will return a dictionary containing the differences in fields
and meta information between two signatures.

	Parameters:

	old_model_sig (ModelSignature) – The old model signature to diff against.

	Returns:

	A dictionary in the following form:

{
 'added': [
 <field name>,
 ...
],
 'deleted': [
 <field name>,
 ...
],
 'changed': {
 <field name>: <FieldSignature diff>,
 ...
 },
 'meta_changed': [
 <'constraints'>,
 <'indexes'>,
 <'index_together'>,
 <'unique_together'>,
],
}

Any key lacking a value will be ommitted from the diff.

	Return type:

	collections.OrderedDict

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – The old signature provided was not a
 ModelSignature.

	
clone()

	Clone the signature.

	Returns:

	The cloned signature.

	Return type:

	ModelSignature

	
serialize(sig_version=2)

	Serialize model data to a signature dictionary.

	Parameters:

	sig_version (int [https://docs.python.org/3/library/functions.html#int], optional) – The signature version to serialize as. This always defaults
to the latest.

	Returns:

	The serialized data.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
__eq__(other)

	Return whether two model signatures are equal.

	Parameters:

	other (ModelSignature) – The other model signature.

	Returns:

	True if the model signatures are equal. False if they
are not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__repr__()

	Return a string representation of the signature.

	Returns:

	A string representation of the signature.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__hash__ = None

	

	
class django_evolution.signature.ConstraintSignature(name, constraint_type, attrs=None)

	Bases: BaseSignature

Signature information for a explicit constraint.

These indexes were introduced in Django 1.11. They correspond to entries
in the model._meta.indexes <django.db.models.Options.indexes
attribute.

Constraint signatures store information on a constraint on model,
including the constraint name, type, and any attribute values needed for
constructing the constraint.

	
classmethod from_constraint(constraint)

	Create a constraint signature from a field.

	Parameters:

	constraint (django.db.models.BaseConstraint) – The constraint to create a signature from.

	Returns:

	The signature based on the constraint.

	Return type:

	ConstraintSignature

	
classmethod deserialize(constraint_sig_dict, sig_version, database='default')

	Deserialize a serialized constraint signature.

	Parameters:

	
	constraint_sig_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary containing constraint signature data.

	sig_version (int [https://docs.python.org/3/library/functions.html#int]) – The version of the serialized signature data.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database.

	Returns:

	The resulting signature instance.

	Return type:

	ConstraintSignature

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
__init__(name, constraint_type, attrs=None)

	Initialize the signature.

	Parameters:

	
	name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the constraint.

	constraint_type (cls) – The class for the constraint. This would be a subclass of
django.db.models.BaseConstraint.

	attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Attributes to pass when constructing the constraint.

	
clone()

	Clone the signature.

	Returns:

	The cloned signature.

	Return type:

	ConstraintSignature

	
serialize(sig_version=2)

	Serialize constraint data to a signature dictionary.

	Parameters:

	sig_version (int [https://docs.python.org/3/library/functions.html#int], optional) – The signature version to serialize as. This always defaults
to the latest.

	Returns:

	The serialized data.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
__eq__(other)

	Return whether two constraint signatures are equal.

	Parameters:

	other (ConstraintSignature) – The other constraint signature.

	Returns:

	True if the constraint signatures are equal. False if they
are not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__hash__()

	Return a hash of the signature.

This is required for comparison within a set [https://docs.python.org/3/library/stdtypes.html#set].

	Returns:

	The hash of the signature.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
__repr__()

	Return a string representation of the signature.

	Returns:

	A string representation of the signature.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.signature.IndexSignature(fields, name=None, expressions=None, attrs=None)

	Bases: BaseSignature

Signature information for an explicit index.

These indexes were introduced in Django 1.11. They correspond to entries
in the model._meta.indexes <django.db.models.Options.indexes
attribute.

Changed in version 2.2: Added a new attrs attribute for storing:

	db_tablespace from Django 2.0+

	condition from Django 2.2+

	include and opclasses from Django 3.2+

Added a new expressions attribute for Django 3.2+.

	
classmethod from_index(index)

	Create an index signature from an index.

	Parameters:

	index (django.db.models.Index [https://docs.djangoproject.com/en/3.1/ref/models/indexes/#django.db.models.Index]) – The index to create the signature from.

	Returns:

	The signature based on the index.

	Return type:

	IndexSignature

	
classmethod deserialize(index_sig_dict, sig_version, database='default')

	Deserialize a serialized index signature.

	Parameters:

	
	index_sig_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary containing index signature data.

	sig_version (int [https://docs.python.org/3/library/functions.html#int]) – The version of the serialized signature data.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database.

	Returns:

	The resulting signature instance.

	Return type:

	IndexSignature

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
__init__(fields, name=None, expressions=None, attrs=None)

	Initialize the signature.

	Parameters:

	
	fields (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The list of field names the index is comprised of.

	name (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The optional name of the index.

	expressions (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – A list of expressions for the index.

	attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional attributes to pass when constructing the index.

	
clone()

	Clone the signature.

	Returns:

	The cloned signature.

	Return type:

	IndexSignature

	
serialize(sig_version=2)

	Serialize index data to a signature dictionary.

	Parameters:

	sig_version (int [https://docs.python.org/3/library/functions.html#int], optional) – The signature version to serialize as. This always defaults
to the latest.

	Returns:

	The serialized data.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
__eq__(other)

	Return whether two index signatures are equal.

	Parameters:

	other (IndexSignature) – The other index signature.

	Returns:

	True if the index signatures are equal. False if they
are not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__hash__()

	Return a hash of the signature.

This is required for comparison within a set [https://docs.python.org/3/library/stdtypes.html#set].

	Returns:

	The hash of the signature.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
__repr__()

	Return a string representation of the signature.

	Returns:

	A string representation of the signature.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.signature.FieldSignature(field_name, field_type, field_attrs=None, related_model=None)

	Bases: BaseSignature

Signature information for a field.

Field signatures store information on a field on model, including the
field name, type, and any attribute values needed for migrating the
schema.

	
classmethod from_field(field)

	Create a field signature from a field.

	Parameters:

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field to create a signature from.

	Returns:

	The signature based on the field.

	Return type:

	FieldSignature

	
classmethod deserialize(field_name, field_sig_dict, sig_version, database='default')

	Deserialize a serialized field signature.

	Parameters:

	
	field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field.

	field_sig_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary containing field signature data.

	sig_version (int [https://docs.python.org/3/library/functions.html#int]) – The version of the serialized signature data.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database.

	Returns:

	The resulting signature instance.

	Return type:

	FieldSignature

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
__init__(field_name, field_type, field_attrs=None, related_model=None)

	Initialize the signature.

	Parameters:

	
	field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field.

	field_type (cls) – The class for the field. This would be a subclass of
django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field].

	field_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Attributes to set on the field.

	related_model (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The full path to a related model.

	
get_attr_value(attr_name, use_default=True)

	Return the value for an attribute.

By default, this will return the default value for the attribute if
it’s not explicitly set.

	Parameters:

	
	attr_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute.

	use_default (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return the default value for the attribute if it’s
not explicitly set.

	Returns:

	The value for the attribute.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
get_attr_default(attr_name)

	Return the default value for an attribute.

	Parameters:

	attr_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute name.

	Returns:

	The default value for the attribute, or None.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
is_attr_value_default(attr_name)

	Return whether an attribute is set to its default value.

	Parameters:

	attr_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute name.

	Returns:

	True if the attribute’s value is set to its default value.
False if it has a custom value.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__hash__ = None

	

	
diff(old_field_sig)

	Diff against an older field signature.

This will return a list of field names that have changed between
this field signature and an older one.

	Parameters:

	old_field_sig (FieldSignature) – The old field signature to diff against.

	Returns:

	The list of field names.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – The old signature provided was not a
 FieldSignature.

	
clone()

	Clone the signature.

	Returns:

	The cloned signature.

	Return type:

	FieldSignature

	
serialize(sig_version=2)

	Serialize field data to a signature dictionary.

	Parameters:

	sig_version (int [https://docs.python.org/3/library/functions.html#int], optional) – The signature version to serialize as. This always defaults
to the latest.

	Returns:

	The serialized data.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

	
__eq__(other)

	Return whether two field signatures are equal.

	Parameters:

	other (FieldSignature) – The other field signature.

	Returns:

	True if the field signatures are equal. False if they
are not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__repr__()

	Return a string representation of the signature.

	Returns:

	A string representation of the signature.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.signature.validate_sig_version(sig_version)

	Validate that a signature version is supported.

	Parameters:

	sig_version (int [https://docs.python.org/3/library/functions.html#int]) – The version of the signature to validate.

	Raises:

	django_evolution.errors.InvalidSignatureVersion – The signature version provided isn’t supported.

django_evolution.diff

Support for diffing project signatures.

Changed in version 2.2: Moved django_evolution.placeholders.NullFieldInitialCallback
into its own module.

Classes

	Diff(original_project_sig, target_project_sig)

	Generates diffs between project signatures.

	
class django_evolution.diff.Diff(original_project_sig, target_project_sig)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generates diffs between project signatures.

The resulting diff is contained in two attributes:

self.changed = {
 app_label: {
 'changed': {
 model_name : {
 'added': [list of added field names]
 'deleted': [list of deleted field names]
 'changed': {
 field: [list of modified property names]
 },
 'meta_changed': {
 'constraints': new value
 'db_table_comment': new value
 'indexes': new value
 'index_together': new value
 'unique_together': new value
 }
 }
 'deleted': [list of deleted model names]
 }
}
self.deleted = {
 app_label: [list of models in deleted app]
}

	
__init__(original_project_sig, target_project_sig)

	Initialize the object.

	Parameters:

	
	original_project_sig (django_evolution.signature.ProjectSignature) – The original project signature for the diff.

	target_project_sig (django_evolution.signature.ProjectSignature) – The target project signature for the diff.

	
is_empty(ignore_apps=True)

	Return whether the diff is empty.

This is used to determine if both signatures are effectively equal. If
ignore_apps is set, this will ignore changes caused by deleted
applications.

	Parameters:

	ignore_apps (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to ignore changes to the applications list.

	Returns:

	True if the diff is empty and signatures are equal.
False if there are changes between the signatures.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Return a string description of the diff.

This will describe the changes found in the diff, for human
consumption.

	Returns:

	The string representation of the diff.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
evolution()

	Return the mutations needed for resolving the diff.

This will attempt to return a hinted evolution, consisting of a series
of mutations for each affected application. These mutations will
convert the database from the original to the target signatures.

	Returns:

	An ordered dictionary of mutations. Each key is an application
label, and each value is a list of mutations for the application.

	Return type:

	collections.OrderedDict

django_evolution.mock_models

Utilities for building mock database models and fields.

Functions

	create_field(project_sig, field_name, ...[, ...])

	Create a Django field instance for the given signature data.

Classes

	MockMeta(project_sig, app_name, model_name, ...)

	A mock of a models Options object, based on the model signature.

	MockModel(project_sig, app_name, model_name, ...)

	A mock model.

	MockRelated(related_model, model, field)

	A mock RelatedObject for relation fields.

	
django_evolution.mock_models.create_field(project_sig, field_name, field_type, field_attrs, parent_model, related_model=None)

	Create a Django field instance for the given signature data.

This creates a field in a way that’s compatible with a variety of versions
of Django. It takes in data such as the field’s name and attributes
and creates an instance that can be used like any field found on a model.

	Parameters:

	
	field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field.

	field_type (cls) – The class for the type of field being constructed. This must be a
subclass of django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field].

	field_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Attributes to set on the field.

	parent_model (cls) – The parent model that would own this field. This must be a
subclass of django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model].

	related_model (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The full class path to a model this relates to. This requires
a django.db.models.ForeignKey [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey] field type.

	Returns:

	A new field instance matching the provided data.

	Return type:

	django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]

	
class django_evolution.mock_models.MockMeta(project_sig, app_name, model_name, model_sig, managed=False, auto_created=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A mock of a models Options object, based on the model signature.

This emulates the standard Meta class for a model, storing data and
providing mock functions for setting up fields from a signature.

	
__init__(project_sig, app_name, model_name, model_sig, managed=False, auto_created=False)

	Initialize the meta instance.

	Parameters:

	
	project_sig (django_evolution.signature.ProjectSignature) – The project’s schema signature.

	app_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Django application owning the model.

	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model.

	model_sig (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The model’s schema signature.

	managed (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this represents a model managed internally by Django,
rather than a developer-created model.

	auto_created (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this represents an auto-created model (such as an
intermediary many-to-many model).

	
property local_fields

	A list of all local fields on the model.

	
property fields

	A list of all local fields on the model.

	
property local_many_to_many

	A list of all local Many-to-Many fields on the model.

	
property label

	A label shown for this model.

New in version 2.2.

	
setup_fields(model, stub=False)

	Set up the fields listed in the model’s signature.

For each field in the model signature’s list of fields, a field
instance will be created and stored in _fields or
_many_to_many (depending on the type of field).

Some fields (for instance, a field representing a primary key) may
also influence the attributes on this model.

	Parameters:

	
	model (cls) – The model class owning this meta instance. This must be a
subclass of django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model].

	stub (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If provided, only a primary key will be set up. This is used
internally when creating relationships between models and
fields in order to prevent recursive relationships.

	
__getattr__(name)

	Return an attribute from the meta class.

This will look up the attribute from the correct location, depending
on the attribute being accessed.

	Parameters:

	name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute name.

	Returns:

	The attribute value.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
get_field(name)

	Return a field with the given name.

	Parameters:

	name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field.

	Returns:

	The field with the given name.

	Return type:

	django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]

	Raises:

	django.db.models.fields.FieldDoesNotExist – The field could not be found.

	
get_field_by_name(name)

	Return information on a field with the given name.

This is a stub that provides only basic functionality. It will
return information for a field with the given name, with most
data hard-coded.

	Parameters:

	name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field.

	Returns:

	A tuple of information for the following:

	The field instance (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field])

	The model (hard-coded as None)

	Whether this field is owned by this model (hard-coded as
True)

	Whether this is for a many-to-many relationship (hard-coded as
None)

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Raises:

	django.db.models.fields.FieldDoesNotExist – The field could not be found.

	
class django_evolution.mock_models.MockModel(project_sig, app_name, model_name, model_sig, auto_created=False, managed=False, stub=False, db_name=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A mock model.

This replicates some of the state and functionality of a model for
use when generating, reading, or mutating signatures.

	
__init__(project_sig, app_name, model_name, model_sig, auto_created=False, managed=False, stub=False, db_name=None)

	Initialize the model.

	Parameters:

	
	project_sig (django_evolution.signature.ProjectSignature) – The project’s schema signature.

	app_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Django app that owns the model.

	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model.

	model_sig (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The model’s schema signature.

	auto_created (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this represents an auto-created model (such as an
intermediary many-to-many model).

	managed (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this represents a model managed internally by Django,
rather than a developer-created model.

	stub (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this is a stub model. This is used internally to
create models that only contain a primary key field and no
others, for use when dealing with circular relationships.

	db_name (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database where the model would be read from or
written to.

	
__repr__()

	Return a string representation of the model.

	Returns:

	A string representation of the model.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__hash__()

	Return a hash of the model instance.

This is used to allow the model instance to be used as a key in a
dictionary.

Django would return a hash of the primary key’s value, but that’s not
necessary for our needs, and we don’t have field values in most mock
models.

	Returns:

	The hash of the model.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
__eq__(other)

	Return whether two mock models are equal.

Both are considered equal if they’re both mock models with the same
app name and model name.

	Parameters:

	other (MockModel) – The other mock model to compare to.

	Returns:

	True if both are equal. False if they are not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class django_evolution.mock_models.MockRelated(related_model, model, field)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A mock RelatedObject for relation fields.

This replicates some of the state and functionality of
django.db.models.related.RelatedObject, used for generating
signatures and applying mutations.

	
__init__(related_model, model, field)

	Initialize the object.

	Parameters:

	
	related_model (MockModel) – The mock model on the other end of the relation.

	model (MockModel) – The mock model on this end of the relation.

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field owning the relation.

django_evolution.mutators

Mutators responsible for applying mutations.

Changed in version 2.2: The classes have all been moved to nested modules. This module will
provide forwarding imports, and will continue to be the primary place to
import these mutations.

	AppMutator

	Tracks and runs mutations for an app.

	ModelMutator

	Tracks and runs mutations for a model.

	SQLMutator

	A mutator that applies arbitrary SQL to the database.

django_evolution.mutators.app_mutator

Mutator that applies changes to an app.

New in version 2.2.

Classes

	AppMutator(app_label, project_sig, ...[, ...])

	Tracks and runs mutations for an app.

	
class django_evolution.mutators.app_mutator.AppMutator(app_label, project_sig, database_state, legacy_app_label=None, database=None)

	Bases: BaseMutator

Tracks and runs mutations for an app.

An AppMutator is bound to a particular app name, and handles operations
that apply to anything on that app.

This will create a ModelMutator internally for each set of adjacent
operations that apply to the same model, allowing the database operations
backend to optimize those operations. This means that it’s in the best
interest of a developer to keep related mutations batched together as much
as possible.

After all operations are added, the caller is expected to call to_sql()
to get the SQL statements needed to apply those operations. Once called,
the mutator is finalized, and new operations cannot be added.

Changed in version 2.2: Moved into the django_evolution.mutators.app_mutator module.

	
classmethod from_evolver(evolver, app_label, legacy_app_label=None, update_evolver=True)

	Create an AppMutator based on the state from an Evolver.

	Parameters:

	
	evolver (django_evolution.evolve.Evolver) – The Evolver containing the state for the app mutator.

	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the app to evolve.

	legacy_app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The legacy label of the app to evolve. This is based on the
module name and is used in the transitioning of pre-Django 1.7
signatures.

	Returns:

	The new app mutator.

	Return type:

	AppMutator

	
__init__(app_label, project_sig, database_state, legacy_app_label=None, database=None)

	Initialize the mutator.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the app to evolve.

	project_sig (django_evolution.signature.ProjectSignature) – The project signature being evolved.

	database_state (django_evolution.db.state.DatabaseState) – The database state information to manipulate.

	legacy_app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The legacy label of the app to evolve. This is based on the
module name and is used in the transitioning of pre-Django 1.7
signatures.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database being evolved.

	
run_mutation(mutation)

	Runs a mutation that applies to this app.

If the mutation applies to a model, a ModelMutator for that model
will be given the job of running this mutation. If the prior operation
operated on the same model, then the previously created ModelMutator
will be used. Otherwise, a new one will be created.

	
run_mutations(mutations)

	Runs a list of mutations.

	
add_sql(mutation, sql)

	Adds SQL that applies to the application.

	
to_sql()

	Return SQL for the operations added to this mutator.

The SQL will represent all the operations made by the mutator.
Once called, no new operations can be added.

	Returns:

	The list of SQL statements.

Each item may be one of the following:

	A Unicode string representing an SQL statement

	A tuple in the form of (sql_statement, sql_params)

	An instance of django_evolution.db.sql_result.
SQLResult.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

django_evolution.mutators.model_mutator

Mutator that applies changes to a model.

New in version 2.2.

Classes

	ModelMutator(app_mutator, model_name)

	Tracks and runs mutations for a model.

	
class django_evolution.mutators.model_mutator.ModelMutator(app_mutator, model_name)

	Bases: BaseAppStateMutator

Tracks and runs mutations for a model.

A ModelMutator is bound to a particular model (by type, not instance) and
handles operations that apply to that model.

Operations are first registered by mutations, and then later provided to
the database’s operations backend, where they will be applied to the
database.

After all operations are added, the caller is expected to call to_sql()
to get the SQL statements needed to apply those operations. Once called,
the mutator is finalized, and new operations cannot be added.

ModelMutator only works with mutations that are instances of
BaseModelFieldMutation.

This is instantiated by
AppMutator, and should not be created manually.

Changed in version 2.2: Moved into the django_evolution.mutators.model_mutator
module.

	
__init__(app_mutator, model_name)

	Initialize the mutator.

	Parameters:

	
	app_mutator (AppMutator) – The app mutator that owns this model mutator.

	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model being evolved.

	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the app to evolve.

	legacy_app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The legacy label of the app to evolve. This is based on the
module name and is used in the transitioning of pre-Django 1.7
signatures.

	project_sig (django_evolution.signature.ProjectSignature) – The project signature being evolved.

	database_state (django_evolution.db.state.DatabaseState) – The database state information to manipulate.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database being evolved.

	
property model_sig

	The model signature that this mutator is working with.

	Type:

	django_evolution.signature.ModelSignature

	Raises:

	django_evolution.errors.EvolutionBaselineMissingError – The model signature or parent app signature could not be found.

	
create_model()

	Create a mock model instance with the stored information.

This is typically used when calling a mutation’s mutate() function
and passing a model instance, but can also be called whenever
a new instance of the model is needed for any lookups.

	Returns:

	The resulting mock model.

	Return type:

	django_evolution.mock_models.MockModel

	Raises:

	django_evolution.errors.EvolutionBaselineMissingError – The model signature or parent app signature could not be found.

	
add_column(mutation, field, initial)

	Adds a pending Add Column operation.

This will cause to_sql() to include SQL for adding the column
with the given information to the model.

	
change_column_type(mutation, old_field, new_field, new_attrs)

	Add a pending Change Column Type operation.

This will cause to_sql() to include SQL for changing a field
to a new type.

	Parameters:

	
	mutation (django_evolution.mutations.ChangeField) – The mutation that triggered this column type change.

	old_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The old field on the model.

	new_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The new field on the model.

	new_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – New attributes set in the

ChangeField.

	
change_column(mutation, field, new_attrs)

	Adds a pending Change Column operation.

This will cause to_sql() to include SQL for changing one or more
attributes for the given column.

	
delete_column(mutation, field)

	Adds a pending Delete Column operation.

This will cause to_sql() to include SQL for deleting the given
column.

	
delete_model(mutation)

	Adds a pending Delete Model operation.

This will cause to_sql() to include SQL for deleting the model.

	
change_meta(mutation, prop_name, new_value)

	Adds a pending Change Meta operation.

This will cause to_sql() to include SQL for changing a supported
attribute in the model’s Meta class.

	
add_sql(mutation, sql)

	Adds an operation for executing custom SQL.

This will cause to_sql() to include the provided SQL statements.
The SQL should be a list of a statements.

	
run_mutation(mutation)

	Run the specified mutation.

The mutation will be provided with a temporary mock instance of a
model that can be used for field or meta lookups.

The mutator must be finalized before this can be called.

Once the mutation has been run, it will call run_simulation(),
applying changes to the database project signature.

	Parameters:

	mutation (django_evolution.mutations.BaseModelMutation) – The mutation to run.

	Raises:

	django_evolution.errors.EvolutionBaselineMissingError – The model signature or parent app signature could not be found.

	
to_sql()

	Returns SQL for the operations added to this mutator.

The SQL will represent all the operations made by the mutator,
as determined by the database operations backend.

Once called, no new operations can be added to the mutator.

	
finish_op(op)

	Finishes handling an operation.

This is called by the evolution operations backend when it is done
with an operation.

Simulations for the operation’s associated mutation will be applied,
in order to update the signatures for the changes made by the
mutation.

	Parameters:

	op (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The operation that has finished.

django_evolution.mutators.sql_mutator

Mutator that applies arbitrary SQL to the database.

New in version 2.2.

Classes

	SQLMutator(mutation, sql)

	A mutator that applies arbitrary SQL to the database.

	
class django_evolution.mutators.sql_mutator.SQLMutator(mutation, sql)

	Bases: BaseMutator

A mutator that applies arbitrary SQL to the database.

This is instantiated by
AppMutator, and should not be created manually.

Changed in version 2.2: Moved into the django_evolution.mutators.sql_mutator module.

	
__init__(mutation, sql)

	Initialize the mutator.

	Parameters:

	
	mutation (django_evolution.mutations.base.BaseMutation) – The mutation that generated this SQL.

	sql (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of SQL statements. See the return type in
to_sql() for possible values.

	
to_sql()

	Return SQL passed to this mutator.

	Returns:

	The list of SQL statements.

Each item may be one of the following:

	A Unicode string representing an SQL statement

	A tuple in the form of (sql_statement, sql_params)

	An instance of django_evolution.db.sql_result.
SQLResult.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

django_evolution.placeholders

Placeholder objects for hinted evolutions.

New in version 2.2.

Classes

	BasePlaceholder([app_label, model_name, ...])

	A placeholder object for use in generating hints.

	NullFieldInitialCallback([app_label, ...])

	A placeholder for an initial value for a field.

	
class django_evolution.placeholders.BasePlaceholder(app_label=None, model_name=None, field_name=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A placeholder object for use in generating hints.

Placeholder objects provide stand-ins for values that must be hand-added
to the evolution file.

New in version 2.2.

	
placeholder_text = None

	The text used in the placeholder.

	Type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__init__(app_label=None, model_name=None, field_name=None)

	Initialize the object.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The label of the application owning the model.

	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the model owning the field.

	field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the field to return an initial value for.

	
__repr__()

	Return a string representation of the object.

This is used when outputting the value in a hinted evolution.

	Returns:

	The placeholder text.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__call__()

	Handle calls on this object.

This will raise an exception stating that the evolution cannot be
performed.

	Raises:

	django_evolution.errors.EvolutionException – An error stating that an explicit initial value must be
 provided in place of this object.

	
class django_evolution.placeholders.NullFieldInitialCallback(app_label=None, model_name=None, field_name=None)

	Bases: BasePlaceholder

A placeholder for an initial value for a field.

This is used in place of an initial value in mutations for fields that
don’t allow NULL values and don’t have an explicit initial value set.
It will show up in hinted evolutions as <<USER VALUE REQUIRED>> and
will fail to evolve.

	
placeholder_text = '<<USER VALUE REQUIRED>>'

	The text used in the placeholder.

	Type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__call__()

	Handle calls on this object.

This will raise an exception stating that the evolution cannot be
performed.

	Raises:

	django_evolution.errors.EvolutionException – An error stating that an explicit initial value must be
 provided in place of this object.

django_evolution.support

Constants indicating available Django features.

Module Attributes

	supports_index_together

	Index names changed in Django 1.5, with the introduction of index_together.

	supports_indexes

	Whether new-style Index classes are available.

	supports_q_comparison

	Whether Q() objects can be directly compared.

	supports_f_comparison

	Whether F() objects can be directly compared.

	supports_constraints

	Whether new-style Constraint classes are available.

	supports_db_table_comments

	Whether database table comments are available.

	supports_migrations

	Whether built-in support for Django Migrations is present.

Functions

	supports_index_feature(attr_name)

	Return whether Index supports a specific attribute.

	
django_evolution.support.supports_index_together = True

	Index names changed in Django 1.5, with the introduction of index_together.

	
django_evolution.support.supports_indexes = True

	Whether new-style Index classes are available.

Django 1.11 introduced formal support for defining explicit indexes not
bound to a field definition or as part of
index_together/unique_together.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.support.supports_q_comparison = True

	Whether Q() objects can be directly compared.

Django 2.0 introduced this support.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.support.supports_f_comparison = True

	Whether F() objects can be directly compared.

Django 2.0 introduced this support.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.support.supports_constraints = True

	Whether new-style Constraint classes are available.

Django 2.2 introduced formal support for defining explicit constraints not
bound to a field definition.

	
django_evolution.support.supports_db_table_comments = False

	Whether database table comments are available.

Django 4.2 introduced formal support for setting comments attached to
tables.

Support may vary by database backend.

New in version 2.3.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.support.supports_migrations = True

	Whether built-in support for Django Migrations is present.

This is available in Django 1.7+.

	
django_evolution.support.supports_index_feature(attr_name)

	Return whether Index supports a specific attribute.

	Parameters:

	attr_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute.

	Returns:

	True if the attribute is supported on this version of Django.
False if it is not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

django_evolution.compat.apps

Compatibility functions for the application registration.

This provides functions for app registration and lookup. These functions
translate to the various versions of Django that are supported.

Functions

	clear_app_cache()

	Clear the Django app/models caches.

	get_app(app_label[, emptyOK])

	Return the app with the given label.

	get_apps()

	Return the list of all installed apps with models.

	is_app_registered(app)

	Return whether the app registry is tracking a given app.

	register_app(app_label, app)

	Register a new app in the registry.

	register_app_models(app_label, model_infos)

	Register one or more models to a given app.

	unregister_app(app_label)

	Unregister an app in the registry.

	unregister_app_model(app_label, model_name)

	Unregister a model with the given name from the given app.

	
django_evolution.compat.apps.clear_app_cache()

	Clear the Django app/models caches.

This cache is used in Django >= 1.2 to quickly return results when
fetching models. It needs to be cleared when modifying the model registry.

	
django_evolution.compat.apps.get_app(app_label, emptyOK=False)

	Return the app with the given label.

This returns the app from the app registry on Django >= 1.7, and from
the old-style cache on Django < 1.7.

	app_label (str):
	The label for the app containing the models.

	emptyOK (bool, optional):
	Impacts the return value if the app has no models in it.

	Returns:

	The app module, if available.

If the app module is available, but the models module is not and
emptyOK is set, this will return None. Otherwise, if modules
are not available, this will raise
ImproperlyConfigured [https://docs.djangoproject.com/en/3.1/ref/exceptions/#django.core.exceptions.ImproperlyConfigured].

	Return type:

	module

	Raises:

	django.core.exceptions.ImproperlyConfigured [https://docs.djangoproject.com/en/3.1/ref/exceptions/#django.core.exceptions.ImproperlyConfigured] – The app module was not found, or it was found but a models module
 was not and emptyOK was False.

	
django_evolution.compat.apps.get_apps()

	Return the list of all installed apps with models.

This returns the apps from the app registry on Django >= 1.7, and from
the old-style cache on Django < 1.7.

	Returns:

	A list of all the modules containing model classes.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

django_evolution.compat.commands

Compatibility module for management commands.

Classes

	BaseCommand([stdout, stderr, no_color, ...])

	Base command compatible with a range of Django versions.

	OptionParserWrapper(parser)

	Compatibility wrapper for OptionParser.

	
class django_evolution.compat.commands.OptionParserWrapper(parser)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Compatibility wrapper for OptionParser.

This exports a more modern ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]-based API
for OptionParser [https://docs.python.org/3/library/optparse.html#optparse.OptionParser], for use when adding arguments in
management commands. This only contains a subset of the functionality
of ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

	
__init__(parser)

	Initialize the wrapper.

	Parameters:

	parser (optparse.OptionParser [https://docs.python.org/3/library/optparse.html#optparse.OptionParser]) – The option parser.

	
add_argument(*args, **kwargs)

	Add an argument to the parser.

This is a simple wrapper that provides compatibility with most of
argparse.ArgumentParser.add_argument() [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument]. It supports the
types that optparse.OptionParser.add_option() [https://docs.python.org/3/library/optparse.html#optparse.OptionParser.add_option] supports (though
those types should be passed as the primitive types and not as the
string names).

	Parameters:

	
	*args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Positional arguments to pass to
optparse.OptionParser.add_option() [https://docs.python.org/3/library/optparse.html#optparse.OptionParser.add_option].

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments to pass to
optparse.OptionParser.add_option() [https://docs.python.org/3/library/optparse.html#optparse.OptionParser.add_option].

	
class django_evolution.compat.commands.BaseCommand(stdout=None, stderr=None, no_color=False, force_color=False)

	Bases: BaseCommand

Base command compatible with a range of Django versions.

This is a version of django.core.management.base.BaseCommand
that supports the modern way of adding arguments while retaining
compatibility with older versions of Django. See the parent class’s
documentation for details on usage.

	
property use_argparse

	Whether argparse should be used for argument parsing.

This is used internally by Django.

	
create_parser(*args, **kwargs)

	Create a parser for the command.

This is a wrapper around Django’s method that ensures compatibility
with old-style (<= 1.6)) and new-style (>= 1.7) argument parsing
logic.

	Parameters:

	
	*args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Positional arguments to pass to the parent method.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments to pass to the parent method.

	Returns:

	The argument parser. This will be a
optparse.OptionParser [https://docs.python.org/3/library/optparse.html#optparse.OptionParser] or a
argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
add_arguments(parser)

	Add arguments to the command.

By default, this does nothing. Subclasses can override to add
additional arguments.

	Parameters:

	parser (object [https://docs.python.org/3/library/functions.html#object]) – The argument parser. This will be a
optparse.OptionParser [https://docs.python.org/3/library/optparse.html#optparse.OptionParser] or a
argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

	
__getattribute__(name)

	Return an attribute from the command.

If the attribute name is “option_list”, some special work will be
done to ensure we’re returning a valid list that the caller can work
with, even if the options were created in add_arguments().

	Parameters:

	name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute name.

	Returns:

	The attribute value.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

django_evolution.compat.datastructures

Compatibility imports for data structures.

This provides imports for data structures that are needed internally, to
provide compatibility with different versions of Django.

	
class django_evolution.compat.datastructures.OrderedDict

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Dictionary that remembers insertion order

	
__init__(*args, **kwargs)

	

	
__setitem__(key, value, /)

	Set self[key] to value.

	
__delitem__(key, /)

	Delete self[key].

	
__iter__()

	Implement iter(self).

	
__reversed__() <==> reversed(od)

	

	
clear() → None. Remove all items from od.

	

	
popitem(last=True)

	Remove and return a (key, value) pair from the dictionary.

Pairs are returned in LIFO order if last is true or FIFO order if false.

	
move_to_end(key, last=True)

	Move an existing element to the end (or beginning if last is false).

Raise KeyError if the element does not exist.

	
__sizeof__() → size of D in memory, in bytes

	

	
update([E,]**F) → None. Update D from dict/iterable E and F.

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

	
keys() → a set-like object providing a view on D's keys

	

	
items() → a set-like object providing a view on D's items

	

	
values() → an object providing a view on D's values

	

	
__ne__(value, /)

	Return self!=value.

	
pop(k[, d]) → v, remove specified key and return the corresponding

	value. If key is not found, d is returned if given, otherwise KeyError
is raised.

	
setdefault(key, default=None)

	Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

	
__repr__()

	Return repr(self).

	
__reduce__()

	Return state information for pickling

	
copy() → a shallow copy of od

	

	
fromkeys(value=None)

	Create a new ordered dictionary with keys from iterable and values set to value.

	
__eq__(value, /)

	Return self==value.

	
__ge__(value, /)

	Return self>=value.

	
__gt__(value, /)

	Return self>value.

	
__hash__ = None

	

	
__le__(value, /)

	Return self<=value.

	
__lt__(value, /)

	Return self<value.

django_evolution.compat.db

Compatibility functions for database-related operations.

This provides functions for database operations, SQL generation, index name
generation, and more. These functions translate to the various versions of
Django that are supported.

Functions

	atomic([using])

	Perform database operations atomically within a transaction.

	collect_sql_schema_editor(connection)

	Create a schema editor for the purpose of collecting SQL.

	convert_table_name(connection, name)

	Convert a table name to a format required by the database backend.

	create_constraint_name(connection, r_col, ...)

	Return the name of a constraint.

	create_index_name(connection, table_name[, ...])

	Return the name for an index for a field.

	create_index_together_name(connection, ...)

	Return the name of an index for an index_together.

	db_get_installable_models_for_app(app, db_state)

	Return models that can be installed in a database.

	db_router_allows_migrate(database, ...)

	Return whether a database router allows migrate operations for a model.

	db_router_allows_schema_upgrade(database, ...)

	Return whether a database router allows a schema upgrade for a model.

	db_router_allows_syncdb(database, model_cls)

	Return whether a database router allows syncdb operations for a model.

	digest(connection, *args)

	Return a digest hash for a set of arguments.

	sql_add_constraints(connection, model, refs)

	Return SQL statements for adding constraints.

	sql_create_app(app[, db_name])

	Return SQL statements for creating all models for an app.

	sql_create_for_many_to_many_field(...)

	Return SQL statements for creating a ManyToManyField's table.

	sql_create_models(models[, tables, db_name, ...])

	Return SQL statements for creating a list of models.

	sql_delete(app[, db_name])

	Return SQL statements for deleting all models in an app.

	sql_delete_constraints(connection, model, ...)

	Return SQL statements for deleting constraints.

	sql_delete_index(connection, model, index_name)

	Return SQL statements for deleting an index.

	sql_indexes_for_field(connection, model, field)

	Return SQL statements for creating indexes for a field.

	sql_indexes_for_fields(connection, model, fields)

	Return SQL statements for creating indexes covering multiple fields.

	sql_indexes_for_model(connection, model)

	Return SQL statements for creating all indexes for a model.

	
django_evolution.compat.db.atomic(using=None)

	Perform database operations atomically within a transaction.

The caller can use this to ensure SQL statements are executed within
a transaction and then cleaned up nicely if there’s an error.

This provides compatibility with all supported versions of Django.

	Parameters:

	using (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The database connection name to use. Defaults to the default
database connection.

	
django_evolution.compat.db.create_constraint_name(connection, r_col, col, r_table, table)

	Return the name of a constraint.

This provides compatibility with all supported versions of Django.

	Parameters:

	
	connection (object [https://docs.python.org/3/library/functions.html#object]) – The database connection.

	r_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The column name for the source of the relation.

	col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The column name for the “to” end of the relation.

	r_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The table name for the source of the relation.

	table (str [https://docs.python.org/3/library/stdtypes.html#str]) – The table name for the “to” end of the relation.

	Returns:

	The generated constraint name for this version of Django.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.compat.db.create_index_name(connection, table_name, field_names=[], col_names=[], unique=False, suffix='')

	Return the name for an index for a field.

This provides compatibility with all supported versions of Django.

	Parameters:

	
	connection (object [https://docs.python.org/3/library/functions.html#object]) – The database connection.

	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	field_names (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The list of field names for the index.

	col_names (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The list of column names for the index.

	unique (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not this index is unique.

	suffix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A suffix for the index. This is only used with Django >= 1.7.

	Returns:

	The generated index name for this version of Django.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.compat.db.create_index_together_name(connection, table_name, field_names)

	Return the name of an index for an index_together.

This provides compatibility with all supported versions of Django >= 1.5.
Prior versions don’t support index_together.

	Parameters:

	
	connection (object [https://docs.python.org/3/library/functions.html#object]) – The database connection.

	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	field_names (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – The list of field names indexed together.

	Returns:

	The generated index name for this version of Django.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.compat.db.db_get_installable_models_for_app(app, db_state)

	Return models that can be installed in a database.

	Parameters:

	
	app (module) – The models module for the app.

	db_state (django_evolution.db.state.DatabaseState) – The introspected state of the database.

	
django_evolution.compat.db.db_router_allows_migrate(database, app_label, model_cls)

	Return whether a database router allows migrate operations for a model.

This will only return True for Django 1.7 and newer and if the
router allows migrate operations. This is compatible with both the
Django 1.7 and 1.8+ versions of allow_migrate.

	Parameters:

	
	database (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.

	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The application label.

	model_cls (type [https://docs.python.org/3/library/functions.html#type]) – The model class.

	Returns:

	True if routers allow migrate for this model.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.compat.db.db_router_allows_schema_upgrade(database, app_label, model_cls)

	Return whether a database router allows a schema upgrade for a model.

This is a convenience wrapper around db_router_allows_migrate()
and db_router_allows_syncdb().

	Parameters:

	
	database (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.

	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The application label.

	model_cls (type [https://docs.python.org/3/library/functions.html#type]) – The model class.

	Returns:

	True if routers allow migrate for this model.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.compat.db.db_router_allows_syncdb(database, model_cls)

	Return whether a database router allows syncdb operations for a model.

This will only return True for Django 1.6 and older and if the
router allows syncdb operations.

	Parameters:

	
	database (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.

	model_cls (type [https://docs.python.org/3/library/functions.html#type]) – The model class.

	Returns:

	True if routers allow syncdb for this model.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.compat.db.digest(connection, *args)

	Return a digest hash for a set of arguments.

This is mostly used as part of the index/constraint name generation
processes. It offers compatibility with a range of Django versions.

	Parameters:

	
	connection (object [https://docs.python.org/3/library/functions.html#object]) – The database connection.

	*args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The positional arguments used to build the digest hash out of.

	Returns:

	The resulting digest hash.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.compat.db.sql_add_constraints(connection, model, refs)

	Return SQL statements for adding constraints.

This provides compatibility with all supported versions of Django.

	Parameters:

	
	connection (object [https://docs.python.org/3/library/functions.html#object]) – The database connection.

	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The database model to add constraints on.

	refs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of constraint references to add.

The keys are instances of django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model].
The values are a tuple of (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model],
django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]).

Warning

Keys may be removed as constraints are added. Make sure to
pass in a copy of the dictionary if the original dictionary
msut be preserved.

	Returns:

	The list of SQL statements for adding constraints.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
django_evolution.compat.db.sql_create_app(app, db_name=None)

	Return SQL statements for creating all models for an app.

This provides compatibility with all supported versions of Django.

	Parameters:

	
	app (module) – The application module.

	db_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The database connection name. Defaults to the default database
connection.

	Returns:

	The list of SQL statements used to create the models for the app.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
django_evolution.compat.db.sql_create_models(models, tables=None, db_name=None, return_deferred=False)

	Return SQL statements for creating a list of models.

This provides compatibility with all supported versions of Django.

It’s recommended that callers include auto-created models in the list,
to ensure all references are correct.

Changed in version 2.2: Added the ``return_deferred` argument.

	Parameters:

	
	models (list [https://docs.python.org/3/library/stdtypes.html#list] of type [https://docs.python.org/3/library/functions.html#type]) – The list of Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model] subclasses.

	tables (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – A list of existing table names from the database. If not provided,
this will be introspected from the database.

	db_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The database connection name. Defaults to the default database
connection.

	return_deferred (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return any deferred SQL separately from the model
creation SQL. If True, the return type will change to a tuple.

	Returns:

	If return_deferred=False (the default), this will be a list of
SQL statements used to create the models for the app.

If return_deferred=True, this will be a 2-tuple in the form of
(list_of_sql, list_of_deferred_sql).

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
django_evolution.compat.db.sql_create_for_many_to_many_field(connection, model, field)

	Return SQL statements for creating a ManyToManyField’s table.

This provides compatibility with all supported versions of Django.

	Parameters:

	
	connection (object [https://docs.python.org/3/library/functions.html#object]) – The database connection.

	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model for the ManyToManyField’s relations.

	field (django.db.models.ManyToManyField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ManyToManyField]) – The field setting up the many-to-many relation.

	Returns:

	The list of SQL statements for creating the table and constraints.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
django_evolution.compat.db.sql_delete(app, db_name=None)

	Return SQL statements for deleting all models in an app.

This provides compatibility with all supported versions of Django.

	Parameters:

	
	app (module) – The application module containing the models to delete.

	db_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The database connection name. Defaults to the default database
connection.

	Returns:

	The list of SQL statements for deleting the models and constraints.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
django_evolution.compat.db.sql_delete_constraints(connection, model, remove_refs)

	Return SQL statements for deleting constraints.

This provides compatibility with all supported versions of Django.

	Parameters:

	
	connection (object [https://docs.python.org/3/library/functions.html#object]) – The database connection.

	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The database model to delete constraints on.

	remove_refs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of constraint references to remove.

The keys are instances of django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model].
The values are a tuple of (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model],
django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]).

Warning

Keys may be removed as constraints are deleted. Make sure to
pass in a copy of the dictionary if the original dictionary
msut be preserved.

	Returns:

	The list of SQL statements for deleting constraints.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
django_evolution.compat.db.sql_delete_index(connection, model, index_name)

	Return SQL statements for deleting an index.

This provides compatibility with all supported versions of Django.

	Parameters:

	
	connection (object [https://docs.python.org/3/library/functions.html#object]) – The database connection.

	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The database model to delete an index on.

	index_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the index to delete.

	Returns:

	The list of SQL statements for deleting the index.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
django_evolution.compat.db.sql_indexes_for_field(connection, model, field)

	Return SQL statements for creating indexes for a field.

This provides compatibility with all supported versions of Django.

	Parameters:

	
	connection (object [https://docs.python.org/3/library/functions.html#object]) – The database connection.

	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The database model owning the field.

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field being indexed.

	Returns:

	The list of SQL statements for creating the indexes.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
django_evolution.compat.db.sql_indexes_for_fields(connection, model, fields, index_together=False)

	Return SQL statements for creating indexes covering multiple fields.

This provides compatibility with all supported versions of Django.

	Parameters:

	
	connection (object [https://docs.python.org/3/library/functions.html#object]) – The database connection.

	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The database model owning the fields.

	fields (list [https://docs.python.org/3/library/stdtypes.html#list] of django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The list of fields for the index.

	index_together (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this is from an index_together rule.

	Returns:

	The list of SQL statements for creating the indexes.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
django_evolution.compat.db.sql_indexes_for_model(connection, model)

	Return SQL statements for creating all indexes for a model.

This provides compatibility with all supported versions of Django.

	Parameters:

	
	connection (object [https://docs.python.org/3/library/functions.html#object]) – The database connection.

	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The database model to create indexes for.

	Returns:

	The list of SQL statements for creating the indexes.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
django_evolution.compat.db.truncate_name(identifier, length=None, hash_len=4)

	Shorten a SQL identifier to a repeatable mangled version with the given
length.

If a quote stripped name contains a namespace, e.g. USERNAME”.”TABLE,
truncate the table portion only.

django_evolution.compat.models

Compatibility functions for model-related operations.

This provides functions for working with models or importing moved fields.
These translate to the various versions of Django that are supported.

Functions

	get_field_is_hidden(field)

	Return whether a field is hidden.

	get_field_is_many_to_many(field)

	Return whether a field is a Many-to-Many field.

	get_field_is_relation(field)

	Return whether a field is a relation.

	get_model_name(model)

	Return the model's name.

	get_models([app_mod, include_auto_created])

	Return the models belonging to an app.

	get_rel_target_field(field)

	Return the target field for a field's relation.

	get_remote_field(field)

	Return the remote field for a relation.

	get_remote_field_model(rel)

	Return the model a relation is pointing to.

	get_remote_field_related_model(rel)

	Return the model a relation is pointing from.

	set_model_name(model, name)

	Set the name of a model.

	
exception django_evolution.compat.models.FieldDoesNotExist

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

The requested model field does not exist

	
class django_evolution.compat.models.GenericForeignKey(ct_field='content_type', fk_field='object_id', for_concrete_model=True)

	Bases: FieldCacheMixin

Provide a generic many-to-one relation through the content_type and
object_id fields.

This class also doubles as an accessor to the related object (similar to
ForwardManyToOneDescriptor) by adding itself as a model attribute.

	
auto_created = False

	

	
concrete = False

	

	
hidden = False

	

	
is_relation = True

	

	
many_to_many = False

	

	
many_to_one = True

	

	
one_to_many = False

	

	
one_to_one = False

	

	
related_model = None

	

	
remote_field = None

	

	
__init__(ct_field='content_type', fk_field='object_id', for_concrete_model=True)

	

	
editable = False

	

	
contribute_to_class(cls, name, **kwargs)

	

	
get_filter_kwargs_for_object(obj)

	See corresponding method on Field

	
get_forward_related_filter(obj)

	See corresponding method on RelatedField

	
__str__()

	Return str(self).

	
check(**kwargs)

	

	
get_cache_name()

	

	
get_content_type(obj=None, id=None, using=None)

	

	
get_prefetch_queryset(instances, queryset=None)

	

	
__get__(instance, cls=None)

	

	
__set__(instance, value)

	

	
class django_evolution.compat.models.GenericRelation(to, object_id_field='object_id', content_type_field='content_type', for_concrete_model=True, related_query_name=None, limit_choices_to=None, **kwargs)

	Bases: ForeignObject

Provide a reverse to a relation created by a GenericForeignKey.

	
auto_created = False

	

	
many_to_many = False

	

	
many_to_one = False

	

	
one_to_many = True

	

	
one_to_one = False

	

	
rel_class

	alias of GenericRel

	
mti_inherited = False

	

	
__init__(to, object_id_field='object_id', content_type_field='content_type', for_concrete_model=True, related_query_name=None, limit_choices_to=None, **kwargs)

	

	
check(**kwargs)

	

	
resolve_related_fields()

	

	
get_path_info(filtered_relation=None)

	Get path from this field to the related model.

	
get_reverse_path_info(filtered_relation=None)

	Get path from the related model to this field’s model.

	
value_to_string(obj)

	Return a string value of this field from the passed obj.
This is used by the serialization framework.

	
contribute_to_class(cls, name, **kwargs)

	Register the field with the model class it belongs to.

If private_only is True, create a separate instance of this field
for every subclass of cls, even if cls is not an abstract model.

	
set_attributes_from_rel()

	

	
get_internal_type()

	

	
get_content_type()

	Return the content type associated with this field’s model.

	
get_extra_restriction(where_class, alias, remote_alias)

	Return a pair condition used for joining and subquery pushdown. The
condition is something that responds to as_sql(compiler, connection)
method.

Note that currently referring both the ‘alias’ and ‘related_alias’
will not work in some conditions, like subquery pushdown.

A parallel method is get_extra_descriptor_filter() which is used in
instance.fieldname related object fetching.

	
bulk_related_objects(objs, using='default')

	Return all objects related to objs via this GenericRelation.

	
django_evolution.compat.models.get_field_is_hidden(field)

	Return whether a field is hidden.

New in version 2.2.

	Parameters:

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field to check.

	Returns:

	True if the field is hidden. False if it is not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.compat.models.get_field_is_many_to_many(field)

	Return whether a field is a Many-to-Many field.

New in version 2.2.

	Parameters:

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field to check.

	Returns:

	True if the field is a Many-to-Many field. False if it is not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.compat.models.get_field_is_relation(field)

	Return whether a field is a relation.

A field is a relation if it’s an object like a
django.db.models.ForeignKey [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey] or
django.db.models.ManyToManyField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ManyToManyField], or if it’s a relation
utility field like
django.db.models.fields.related.ForeignObjectRel or
django.db.models.fields.related.ManyToOneRel.

New in version 2.2.

	Parameters:

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field] or :class:`` :class:`` :class:`` :class:`` :class:`` :class:`` :class:`` :class:`` :class:`` :class:`` :class:`` django.db.models.fields.related.ForeignObjectRel) – The field to check.

	Returns:

	True if the field is a relation. False if it is not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.compat.models.get_model(app_label, model_name=None, require_ready=True)

	Return the model matching the given app_label and model_name.

As a shortcut, app_label may be in the form <app_label>.<model_name>.

model_name is case-insensitive.

Raise LookupError if no application exists with this label, or no
model exists with this name in the application. Raise ValueError if
called with a single argument that doesn’t contain exactly one dot.

	
django_evolution.compat.models.get_models(app_mod=None, include_auto_created=False)

	Return the models belonging to an app.

	Parameters:

	
	app_mod (module, optional) – The application module.

	include_auto_created (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return auto-created models (such as many-to-many
models) in the results.

	Returns:

	The list of modules belonging to the app.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
django_evolution.compat.models.get_model_name(model)

	Return the model’s name.

	Parameters:

	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model for which to return the name.

	Returns:

	The model’s name.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.compat.models.get_rel_target_field(field)

	Return the target field for a field’s relation.

Warning

Despite the name, this should only be called on a
ForeignKey and not on a relation, in order to avoid
consistency issues in the data returned on Django >= 1.7.

	Parameters:

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The relation field.

	Returns:

	The field on the other end of the relation.

	Return type:

	django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]

	
django_evolution.compat.models.get_remote_field(field)

	Return the remote field for a relation.

This will be an intermediary field, such as:

	django.db.models.fields.related.ForeignObjectRel

	django.db.models.fields.related.ManyToOneRel

	django.db.models.fields.related.OneToOneRel

	django.db.models.fields.related.ManyToManyRel

This is equivalent to rel prior to Django 1.9 and remote_field
in 1.9 onward.

Changed in version 2.2: On Django < 1.9, a main relation field (like
django.db.models.ForeignKey [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey]) will return the utility
relation, matching the behavior on >= 1.9.

	Parameters:

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The relation field.

	Returns:

	The remote field on the relation.

	Return type:

	django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]

	
django_evolution.compat.models.get_remote_field_model(rel)

	Return the model a relation is pointing to.

This is equivalent to rel.to prior to Django 1.9 and
remote_field.model in 1.9 onward.

	Parameters:

	rel (object [https://docs.python.org/3/library/functions.html#object]) – The relation object. This is expected to be the result of a
get_remote_field() call.

	Returns:

	The model the relation points to. This should be a subclass of
django.db.models.Model().

	Return type:

	type [https://docs.python.org/3/library/functions.html#type]

	
django_evolution.compat.models.get_remote_field_related_model(rel)

	Return the model a relation is pointing from.

New in version 2.2.

	Parameters:

	rel (object [https://docs.python.org/3/library/functions.html#object]) – The relation object. This is expected to be the result of a
get_remote_field() call.

	Returns:

	The model the relation points to. This should be a subclass of
django.db.models.Model().

	Return type:

	type [https://docs.python.org/3/library/functions.html#type]

	
django_evolution.compat.models.set_model_name(model, name)

	Set the name of a model.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model to set the new name on.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new model name.

django_evolution.compat.picklers

Picklers for working with serialized data.

Classes

	DjangoCompatUnpickler(file, *[, ...])

	Unpickler compatible with changes to Django class/module paths.

	SortedDict(*args, **kwargs)

	Compatibility for unpickling a SortedDict.

	
class django_evolution.compat.picklers.SortedDict(*args, **kwargs)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Compatibility for unpickling a SortedDict.

Old signatures may use an old Django SortedDict structure, which does
not exist in modern versions. This changes any construction of this
data structure into a collections.OrderedDict.

	
static __new__(cls, *args, **kwargs)

	Construct an instance of the class.

	Parameters:

	
	*args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Positional arguments to pass to the constructor.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments to pass to the constructor.

	Returns:

	The new instance.

	Return type:

	collections.OrderedDict

	
class django_evolution.compat.picklers.DjangoCompatUnpickler(file, *, fix_imports=True, encoding='ASCII', errors='strict')

	Bases: _Unpickler

Unpickler compatible with changes to Django class/module paths.

This provides compatibility across Django versions for various field types,
updating referenced module paths for fields to a standard location so
that the fields can be located on all Django versions.

	
find_class(module, name)

	Return the class for a given module and class name.

If looking up a class from django.db.models.fields, the class will
instead be looked up from django.db.models, fixing lookups on
some Django versions.

	Parameters:

	
	module (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The module path.

	name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The class name.

	Returns:

	The resulting class.

	Return type:

	type [https://docs.python.org/3/library/functions.html#type]

	Raises:

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – The class could not be found in the module.

django_evolution.compat.py23

Compatibility functions for Python 2 and 3.

Functions

	pickle_dumps(obj)

	Return a pickled representation of an object.

	pickle_loads(pickled_str)

	Return the unpickled data from a pickle payload.

	
django_evolution.compat.py23.pickle_dumps(obj)

	Return a pickled representation of an object.

This will always use Pickle protocol 0, which is the default on Python 2,
for compatibility across Python 2 and 3.

	Parameters:

	obj (object [https://docs.python.org/3/library/functions.html#object]) – The object to dump.

	Returns:

	The Unicode pickled representation of the object, safe for storing
in the database.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.compat.py23.pickle_loads(pickled_str)

	Return the unpickled data from a pickle payload.

	Parameters:

	pickled_str (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The pickled data.

	Returns:

	The unpickled data.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

django_evolution.db.common

Common evolution operations backend for databases.

Classes

	BaseEvolutionOperations(database_state[, ...])

	Base class for evolution operations for a database backend.

	
class django_evolution.db.common.BaseEvolutionOperations(database_state, connection=<django.db.DefaultConnectionProxy object>)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for evolution operations for a database backend.

	
name = None

	The name of the database type.

New in version 2.3.

	
supported_change_attrs = {'db_column', 'db_index', 'db_table', 'decimal_places', 'max_digits', 'max_length', 'null', 'unique'}

	A set of attributes that can be changed in the database.

	
supported_change_meta = {'constraints': True, 'db_table_comment': False, 'index_together': True, 'indexes': True, 'unique_together': True}

	

	
mergeable_ops = ('add_column', 'change_column', 'change_metadelete_column')

	

	
ignored_m2m_attrs = {<class 'django.db.models.fields.related.ManyToManyField'>: {'null'}}

	

	
default_tablespace = None

	The default tablespace for the database, if tablespaces are supported.

New in version 2.2.

	Type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
change_column_type_sets_attrs = True

	Whether a column type change operation also sets new attributes.

If False, attributes will be set through the standard field change
operation.

New in version 2.2.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
alter_table_sql_result_cls

	alias of AlterTableSQLResult

	
__init__(database_state, connection=<django.db.DefaultConnectionProxy object>)

	Initialize the evolution operations.

	Parameters:

	
	database_state (django_evolution.db.state.DatabaseState) – The database state to track information through.

	connection (object [https://docs.python.org/3/library/functions.html#object]) – The database connection.

	
can_add_index(index)

	Return whether an index can be added to this database.

This will determine if the database connection supports the state
represented in the index well enough to be written to the database.

Note that not all features of an index are required. At the moment,
to comply with Django’s logic
(BaseDatabaseSchemaEditor.add_index() [https://docs.djangoproject.com/en/3.1/ref/schema-editor/#django.db.backends.base.schema.BaseDatabaseSchemaEditor.add_index]),
an index can be written so long as it either does not contain
expressions or the database backend supports expression indexes.

	Parameters:

	index (django.db.models.Index [https://docs.djangoproject.com/en/3.1/ref/models/indexes/#django.db.models.Index]) – The index that would be written.

	Returns:

	True if the index can be written. False if it cannot.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_field_type_allows_default(field)

	Return whether default values are allowed for a field.

By default, default values are always allowed. Subclasses should
override this if some types do not allow for defaults.

New in version 2.2.

	Parameters:

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field to check.

	Returns:

	True if default values are allowed. False if they’re not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_deferrable_sql()

	Return the SQL for marking a reference as deferrable.

New in version 2.2.

	Returns:

	The SQL for marking a reference as deferrable.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
get_change_column_type_sql(model, old_field, new_field)

	Return SQL for changing a column type.

This should be limited to the ALTER TABLE or equivalent for
changing the column. It should not affect constraints or other
fields.

Subclasses must implement this, unless they override
change_column_type().

New in version 2.2.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The parent model of the column.

	old_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The old field being replaced.

	new_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The new replacement field.

	Returns:

	The SQL statements for changing the column type.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
build_column_schema(model, field, initial=None, skip_null_constraint=False, skip_primary_or_unique_constraint=False, skip_references=False)

	Return information on the schema for building a column.

This is used when creating or re-creating columns on a table.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The parent model of the column.

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field to build the column schema from.

	initial (object [https://docs.python.org/3/library/functions.html#object] or callable) – The initial data for the column.

	skip_null_constraint (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to skip adding NULL/NOT NULL constraints.
This can be used to temporarily omit this part of the
schema while adding the column.

	skip_references (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to skip adding REFERENCES ... information.
This can be used to temporarily omit this part of the
schema while adding the column, handling that step separately.

	Returns:

	The schema information. This has the following keys:

	db_type (unicode):
	The database-specific column type.

	definition (list):
	A list of parts of the column schema definition. Each of
these is a keyword (which may or may not have spaces) or
values used for constructing the column.

	definition_sql_params (list):
	The list of SQL parameters to pass to the executor. These
will be safely handled by the database backend.

	name (unicode):
	The name of the column.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
generate_table_ops_sql(mutator, ops)

	Generates SQL for a sequence of mutation operations.

This will process each operation one-by-one, generating default SQL,
using generate_table_op_sql().

	
generate_table_op_sql(mutator, op, prev_sql_result, prev_op)

	Generates SQL for a single mutation operation.

This will call different SQL-generating functions provided by the
class, depending on the details of the operation.

If two adjacent operations can be merged together (meaning that
they can be turned into one ALTER TABLE statement), they’ll be placed
in the same AlterTableSQLResult.

	
quote_sql_param(param)

	Add protective quoting around an SQL string parameter

	
rename_column(model, old_field, new_field)

	Renames the specified column.

This must be implemented by subclasses. It must return an SQLResult
or AlterTableSQLResult representing the SQL needed to rename the
column.

	
get_rename_table_sql(model, old_db_table, new_db_table)

	Return SQL for renaming a table.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model representing the table to rename.

	old_db_table (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The old table name.

	new_db_table (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The new table name.

	Returns:

	The resulting SQL for renaming the table.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
rename_table(model, old_db_table, new_db_table)

	Rename a table.

This will take care of removing and then restoring any primary field
constraints. If an evolver backend doesn’t support this, or has another
method for managing these constraints, it should override this method.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model representing the table to rename.

	old_db_table (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The old table name.

	new_db_table (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The new table name.

	Returns:

	The resulting SQL for renaming the table.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
delete_column(model, f)

	

	
delete_table(table_name)

	

	
add_m2m_table(model, field)

	Return SQL statements for creating a ManyToManyField’s table.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The database model owning the field.

	field (django.db.models.ManyToManyField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ManyToManyField]) – The field owning the table.

	Returns:

	The list of SQL statements for creating the table.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
add_column(model, field, initial)

	Add a column to a table.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The model representing the table the column will be added to.

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field representing the column being added.

	initial (object [https://docs.python.org/3/library/functions.html#object] or callable) – The initial data to set for the column in all rows. If this
is a callable, it will be called and the result will be used.

	Returns:

	The SQL for adding the column.

	Return type:

	django_evolution.db.sql_result.AlterTableSQLResult

	
set_field_null(model, field, null)

	

	
create_index(model, field)

	Returns the SQL for creating an index for a single field.

The index will be recorded in the database signature for future
operations within the transaction, and the appropriate SQL for
creating the index will be returned.

This is not intended to be overridden.

	
create_unique_index(model, index_name, fields)

	

	
drop_index(model, field)

	Returns the SQL for dropping an index for a single field.

The index matching the field’s column will be looked up and,
if found, the SQL for dropping it will be returned.

If the index was not found on the database or in the database
signature, this won’t return any SQL statements.

This is not intended to be overridden. Instead, subclasses should
override get_drop_index_sql.

	
drop_index_by_name(model, index_name)

	Returns the SQL to drop an index, given an index name.

The index will be removed fom the database signature, and
the appropriate SQL for dropping the index will be returned.

This is not intended to be overridden. Instead, subclasses should
override get_drop_index_sql.

	
get_drop_index_sql(model, index_name)

	Returns the database-specific SQL to drop an index.

This can be overridden by subclasses if they use a syntax
other than “DROP INDEX <name>;”

	
get_new_index_name(model, fields, unique=False)

	Return a newly generated index name.

This returns a unique index name for any indexes created by
django-evolution, based on how Django would compute the index.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The database model for the index.

	fields (list [https://docs.python.org/3/library/stdtypes.html#list] of django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The list of fields for the index.

	unique (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this index is unique.

	Returns:

	The generated name for the index.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_new_constraint_name(table_name, column)

	Return a newly-generated constraint name.

	Parameters:

	
	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	column (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the column.

	Returns:

	The new constraint name.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
get_default_index_name(table_name, field)

	Return a default index name for the database.

This will return an index name for the given field that matches what
the database or Django database backend would automatically generate
when marking a field as indexed or unique.

This can be overridden by subclasses if the database or Django
database backend provides different values.

	Parameters:

	
	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table for the index.

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field for the index.

	Returns:

	The name of the index.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_default_index_together_name(table_name, fields)

	Returns a default index name for an index_together.

This will return an index name for the given field that matches what
Django uses for index_together fields.

	Parameters:

	
	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table for the index.

	fields (list [https://docs.python.org/3/library/stdtypes.html#list] of django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The fields for the index.

	Returns:

	The name of the index.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
change_column_attrs(model, mutation, field_name, new_attrs)

	Return the SQL for changing one or more column attributes.

This will generate all the statements needed for changing a set
of attributes for a column.

The resulting AlterTableSQLResult contains all the SQL needed
to apply these attributes.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The model class that owns the field.

	mutation (django_evolution.mutations.BaseModelMutation) – The mutation applying this change.

	field_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the field on the model.

	new_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary mapping attributes to new values.

	Returns:

	The SQL for modifying the column.

	Return type:

	django_evolution.db.sql_result.AlterTableSQLResult

	
change_column_attr_null(model, mutation, field, old_value, new_value)

	Returns the SQL for changing a column’s NULL/NOT NULL attribute.

	
change_column_attr_decimal_type(model, mutation, field, new_max_digits, new_decimal_places)

	Return SQL for changing a column’s max digits and decimal places.

This is used for DecimalField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.DecimalField] and
subclasses to change the maximum number of digits or decimal places.
As these are used together as a column type, they must be considered
together as one attribute change.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The model class that owns the field.

	mutation (django_evolution.mutations.BaseModelMutation) – The mutation applying this change.

	field (django.db.models.DecimalField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.DecimalField]) – The field being modified.

	new_max_digits (int [https://docs.python.org/3/library/functions.html#int]) – The new value for max_digits. If None, it wasn’t
provided in the attribute change.

	new_decimal_places (int [https://docs.python.org/3/library/functions.html#int]) – The new value for decimal_places. If None, it wasn’t
provided in the attribute change.

	Returns:

	The SQL for modifying the value.

	Return type:

	django_evolution.db.sql_result.AlterTableSQLResult

	
change_column_attr_max_length(model, mutation, field, old_value, new_value)

	Returns the SQL for changing a column’s max length.

	
change_column_attr_db_column(model, mutation, field, old_value, new_value)

	Returns the SQL for changing a column’s name.

	
change_column_attr_db_table(model, mutation, field, old_value, new_value)

	Returns the SQL for changing the table for a ManyToManyField.

	
change_column_attrs_db_index_unique(model, mutation, field, old_db_index, new_db_index, old_unique, new_unique)

	Return SQL for changing indexes due to db_index or unique.

This determines whether standard or unique indexes need to be dropped
or added, and returns the resulting SQL.

Unique indexes are dropped if a field went from unique=True to
unique=False.

If not dropping a unique index, but the field was set to
db_index=True, unique=False, and either db_index=False or
unique=True is being set, a stnadard index will be dropped.

Unique indexes are added if a field went from unique=False to
unique=True.

If not adding a unique index, but the field was set to
db_index=False or unique=True and is being set to
db_index=True, unique=False, then a standard index will be added.

New in version 2.3.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model being changed.

	mutation (django_evolution.mutations.BaseModelMutation) – The mutation applying this change.

	field (django.db.models.DecimalField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.DecimalField]) – The field being modified.

	old_db_index (bool [https://docs.python.org/3/library/functions.html#bool]) – The old db_index value.

	new_db_index (bool [https://docs.python.org/3/library/functions.html#bool]) – The new db_index value.

	old_unique (bool [https://docs.python.org/3/library/functions.html#bool]) – The old unique value.

	new_unique (bool [https://docs.python.org/3/library/functions.html#bool]) – The new unique value.

	Returns:

	The SQL for dropping and/or adding indexes.

	Return type:

	django_evolution.db.sql_result.AlterTableSQLResult

	
change_column_attr_db_index(model, mutation, field, old_value, new_value)

	Return the SQL for creating/dropping indexes for a column.

If setting db_index=True, SQL for generating the index will be
returned.

If setting db_index=False, SQL for dropping the index will be
returned.

Creating or dropping the SQL will also modify the cached/queued
database index state, used by other operations that work with indexes.

Subclasses should override this if they’re sensitive to the order in
which SQL is generated or cached/queued database index state is
modified.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model being changed.

	mutation (django_evolution.mutations.BaseModelMutation) – The mutation applying this change.

	field (django.db.models.DecimalField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.DecimalField]) – The field being modified.

	old_value (bool [https://docs.python.org/3/library/functions.html#bool]) – The old value for db_index.

	new_value (bool [https://docs.python.org/3/library/functions.html#bool]) – The new value for db_index.

	Returns:

	The resulting SQL for creating the index or scheduling a drop.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
change_column_attr_unique(model, mutation, field, old_value, new_value)

	Returns the SQL to change a field’s unique flag.

Changing the unique flag for a given column will affect indexes.
If setting unique to True, an index will be created in the
database signature for future operations within the transaction.
If False, the index will be dropped from the database signature.

The SQL needed to change the column will be returned.

This is not intended to be overridden. Instead, subclasses should
override get_change_unique_sql.

	
change_column_type(model, old_field, new_field, new_attrs)

	Return SQL to change the type of a column.

New in version 2.2.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The type of model owning the field.

	old_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The old field.

	new_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The new field.

	new_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – New attributes set in the

ChangeField.

	Returns:

	The SQL statements for changing the column type.

	Return type:

	django_evolution.sql_result.AlterTableSQLResult

	
get_change_unique_sql(model, field, new_unique_value, constraint_name, initial)

	Returns the database-specific SQL to change a column’s unique flag.

This can be overridden by subclasses if they use a different syntax.

	
get_drop_unique_constraint_sql(model, index_name)

	

	
change_meta_unique_together(model, old_unique_together, new_unique_together)

	Change the unique_together constraints of a table.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model being changed.

	old_unique_together (list [https://docs.python.org/3/library/stdtypes.html#list]) – The old value for unique_together.

	new_unique_together (list [https://docs.python.org/3/library/stdtypes.html#list]) – The new value for unique_together.

	Returns:

	The SQL statements for changing the unique_together
constraints.

	Return type:

	django_evolution.sql_result.SQLResult

	
change_meta_index_together(model, old_index_together, new_index_together)

	Change the index_together indexes of a table.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model being changed.

	old_index_together (list [https://docs.python.org/3/library/stdtypes.html#list]) – The old value for index_together.

	new_index_together (list [https://docs.python.org/3/library/stdtypes.html#list]) – The new value for index_together.

	Returns:

	The SQL statements for changing the index_together indexes.

	Return type:

	django_evolution.sql_result.SQLResult

	
change_meta_db_table_comment(model, old_comment, new_comment)

	Change the comment for a table.

Table comments are supported for some database backends in Django 4.2
and higher. This generates the SQL for setting a comment for a given
table.

New in version 2.3.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model being changed.

	old_comment (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The old comment.

	new_comment (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The new comment.

	Returns:

	The SQL statements for changing Meta.db_table_comment.

	Return type:

	django_evolution.sql_result.SQLResult

	
change_meta_constraints(model, old_constraints, new_constraints)

	Change the constraints of a table.

Constraints are a feature available in Django 2.2+ that allow for
defining custom constraints on a table on
Meta.constraints [https://docs.djangoproject.com/en/3.1/ref/models/options/#django.db.models.Options.constraints].

This will calculate the old and new list of constraint instances,
and the list of added/removed constraints, and call out to
get_update_table_constraints_sql() to generate the SQL for
changing them.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model being changed.

	old_constraints (list [https://docs.python.org/3/library/stdtypes.html#list] of dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A serialized representation of the old value for
Meta.constraints.

This will contain name and type keys, as well as all
attributes on the constraint.

	new_constraints (list [https://docs.python.org/3/library/stdtypes.html#list] of dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A serialized representation of the new value for
Meta.constraints.

This is in the same format as old_constraints.

	Returns:

	The SQL statements for changing Meta.constraints.

	Return type:

	django_evolution.sql_result.SQLResult

	
get_update_table_constraints_sql(model, old_constraints, new_constraints, to_add, to_remove)

	Return SQL for updating the constraints on a table.

The generated SQL will remove any old constraints and add any new
constraints.

By default, this uses the schema editor for the connection. Subclasses
can modify this if they need custom logic.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model being changed.

	old_constraints (list [https://docs.python.org/3/library/stdtypes.html#list] of :class:`` django.db.models.constraints.BaseConstraint) – The old constraints pre-evolution.

	new_constraints (list [https://docs.python.org/3/library/stdtypes.html#list] of :class:`` django.db.models.constraints.BaseConstraint) – The new constraints post-evolution.

	to_add (list [https://docs.python.org/3/library/stdtypes.html#list] of django.db.models.constraints.BaseConstraint) – A list of new constraints to add to the database that weren’t
set before.

	to_remove (list [https://docs.python.org/3/library/stdtypes.html#list] of django.db.models.constraints.BaseConstraint) – A list of old constraints to remove from the database that
aren’t set now.

	Returns:

	The SQL statements for changing the constraints.

	Return type:

	django_evolution.sql_result.SQLResult

	
change_meta_indexes(model, old_indexes, new_indexes)

	Change the indexes of a table defined in a model’s indexes list.

This will apply a set of indexes serialized from a
Meta.indexes
to the database. The serialized values are those passed to
ChangeMeta, in the form of:

[
 {
 'condition': {<deconstructured>},
 'db_tablespace': '...',
 'expressions': [{<deconstructured>}, ...],
 'fields': ['field1', '-field2_sorted_desc'],
 'include': ['...', ...],
 'name': 'optional-index-name',
 'opclasses': ['...', ...],
 },
 ...
]

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model being changed.

	old_indexes (list [https://docs.python.org/3/library/stdtypes.html#list]) – The old serialized value for the indexes.

	new_indexes (list [https://docs.python.org/3/library/stdtypes.html#list]) – The new serialized value for the indexes.

	Returns:

	The SQL statements for changing the indexes.

	Return type:

	django_evolution.sql_result.SQLResult

	
get_fields_for_names(model, field_names, allow_sort_prefixes=False)

	Return the field instances for the given field names.

This will go through each of the provided field names, optionally
handling a sorting prefix (-, used by Django 1.11+’s
Index [https://docs.djangoproject.com/en/3.1/ref/models/indexes/#django.db.models.Index] field lists), and return the
field instance for each.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model to fetch fields from.

	field_names (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The list of field names to fetch.

	allow_sort_prefixes (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to allow sorting prefixes in the field names.

	Returns:

	The resulting list of fields.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]

	
get_column_names_for_fields(fields)

	

	
get_constraints_for_table(table_name)

	Return all known constraints/indexes on a table.

This will scan the table for any constraints or indexes. It generally
will wrap Django’s database introspection support if available (on
Django >= 1.7), falling back on in-house implementations on earlier
releases.

New in version 2.2.

	Parameters:

	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	Returns:

	A dictionary mapping index names to a dictionary containing:

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]):
	The list of columns that the index covers.

	unique (bool [https://docs.python.org/3/library/functions.html#bool]):
	Whether this is a unique index.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_indexes_for_table(table_name)

	Return all known indexes on a table.

This is a fallback used only on Django 1.6, due to lack of proper
introspection on that release. It should only be called internally
by get_constraints_for_table().

	Parameters:

	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	Returns:

	A dictionary mapping index names to a dictionary containing:

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]):
	The list of columns that the index covers.

	unique (bool [https://docs.python.org/3/library/functions.html#bool]):
	Whether this is a unique index.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
stash_field_ref_constraints(model, replaced_fields={}, renamed_db_tables={})

	Return SQL for removing constraints on a primary key field.

This should be called before performing an operation that renames a
field or changes the table on a ManyToManyField on databases that
support adding/dropping constraints on primary keys. The constraints
can then be restored through restore_field_ref_constraints().

As of Django Evolution 2.0, this only considers fields on
ManyToManyFields defined by model, keeping behavior consistent with
prior versions of Django Evolution.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model owning the fields to remove constraints from.

	replaced_fields (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary mapping old fields to new fields. Each field is
expected to be a primary key. These will be checked for field
name and column changes.

	renamed_db_tables (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary mapping old table names to new table names.
This is used when renaming many-to-many intermediary tables.

	Returns:

	A tuple containing the following items:

	The SQLResult that
contains the SQL to remove the current constraints.

	A dictionary containing internal stashed state for restoring
constraints. This should be considered opaque.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
restore_field_ref_constraints(stash)

	Return SQL for adding back field constraints on a table.

This should be called after performing an operation that renames a
field or a ManyToMany table name on databases that support
adding/dropping constraints on primary keys.

This requires a prior call to stash_field_ref_constraints().

	Parameters:

	stash (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Stashed constraint data from
stash_field_ref_constraints().

	Returns:

	The SQL statements for adding back constraints on the field.

	Return type:

	django_evolution.sql_result.SQLResult

	
normalize_initial(initial)

	Normalize an initial value.

If the value is callable, it will be called and the result will be
used. If that result is a string, it will be assumed to be something
safe for embedding directly into SQL.

Anything else is considered best used as a SQL parameter.

New in version 2.3.

	Parameters:

	initial (object [https://docs.python.org/3/library/functions.html#object] or callable) – The initial value to normalize.

	Returns:

	A 2-tuple of:

	The normalized initial value.

	Whether it can be embedded directly into SQL. If False, it
should be used in SQL query parameter list.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
normalize_value(value)

	

	
normalize_bool(value)

	

django_evolution.db.mysql

Evolution operations backend for MySQL/MariaDB.

Classes

	EvolutionOperations(database_state[, connection])

	Evolution operations for MySQL and MariaDB databases.

	
class django_evolution.db.mysql.EvolutionOperations(database_state, connection=<django.db.DefaultConnectionProxy object>)

	Bases: BaseEvolutionOperations

Evolution operations for MySQL and MariaDB databases.

	
name = 'MySQL / MariaDB'

	The name of the database type.

New in version 2.3.

	
get_field_type_allows_default(field)

	Return whether default values are allowed for a field.

New in version 2.2.

	Parameters:

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field to check.

	Returns:

	True if default values are allowed. False if they’re not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_change_column_type_sql(model, old_field, new_field)

	Return SQL to change the type of a column.

New in version 2.2.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The type of model owning the field.

	old_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The old field.

	new_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The new field.

	Returns:

	The SQL statements for changing the column type.

	Return type:

	django_evolution.sql_result.AlterTableSQLResult

	
delete_column(model, f)

	

	
rename_column(model, old_field, new_field)

	Rename the specified column.

This will rename the column through ALTER TABLE .. CHANGE COLUMN.

Any constraints on the column will be stashed away before the
ALTER TABLE and restored afterward.

If the column has not actually changed, or it’s not a real column
(a many-to-many relation), then this will return empty statements.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The model representing the table containing the column.

	old_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The old field definition.

	new_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The new field definition.

	Returns:

	The statements for renaming the column. This may be an empty
list if the column won’t be renamed.

	Return type:

	django_evolution.db.sql_result.AlterTableSQLResult or list [https://docs.python.org/3/library/stdtypes.html#list]

	
set_field_null(model, field, null)

	

	
change_column_attr_max_length(model, mutation, field, old_value, new_value)

	Returns the SQL for changing a column’s max length.

	
get_drop_index_sql(model, index_name)

	Returns the database-specific SQL to drop an index.

This can be overridden by subclasses if they use a syntax
other than “DROP INDEX <name>;”

	
get_change_unique_sql(model, field, new_unique_value, constraint_name, initial)

	Returns the database-specific SQL to change a column’s unique flag.

This can be overridden by subclasses if they use a different syntax.

	
get_rename_table_sql(model, old_db_table, new_db_table)

	Return SQL for renaming a table.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model representing the table to rename.

	old_db_table (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The old table name.

	new_db_table (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The new table name.

	Returns:

	The resulting SQL for renaming the table.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
get_default_index_name(table_name, field)

	Return a default index name for the database.

This will return an index name for the given field that matches what
the database or Django database backend would automatically generate
when marking a field as indexed or unique.

This can be overridden by subclasses if the database or Django
database backend provides different values.

	Parameters:

	
	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table for the index.

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field for the index.

	Returns:

	The name of the index.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_indexes_for_table(table_name)

	Return all known indexes on a table.

This is a fallback used only on Django 1.6, due to lack of proper
introspection on that release.

	Parameters:

	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	Returns:

	A dictionary mapping index names to a dictionary containing:

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]):
	The list of columns that the index covers.

	unique (bool [https://docs.python.org/3/library/functions.html#bool]):
	Whether this is a unique index.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

django_evolution.db.postgresql

Evolution operations backend for Postgres.

Classes

	EvolutionOperations(database_state[, connection])

	Evolution operations for Postgres databases.

	
class django_evolution.db.postgresql.EvolutionOperations(database_state, connection=<django.db.DefaultConnectionProxy object>)

	Bases: BaseEvolutionOperations

Evolution operations for Postgres databases.

	
name = 'Postgres'

	The name of the database type.

New in version 2.3.

	
default_tablespace = 'pg_default'

	The default tablespace for the database, if tablespaces are supported.

New in version 2.2.

	Type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
change_column_type_sets_attrs = False

	Whether a column type change operation also sets new attributes.

If False, attributes will be set through the standard field change
operation.

New in version 2.2.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
alter_field_type_map = {'bigserial': 'bigint', 'serial': 'integer', 'smallserial': 'smallint'}

	A mapping of field types for use when altering types.

New in version 2.2.

	
get_change_column_type_sql(model, old_field, new_field)

	Return SQL to change the type of a column.

New in version 2.2.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The type of model owning the field.

	old_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The old field.

	new_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The new field.

	Returns:

	The SQL statements for changing the column type.

	Return type:

	django_evolution.sql_result.AlterTableSQLResult

	
rename_column(model, old_field, new_field)

	Renames the specified column.

This must be implemented by subclasses. It must return an SQLResult
or AlterTableSQLResult representing the SQL needed to rename the
column.

	
get_drop_unique_constraint_sql(model, index_name)

	

	
get_default_index_name(table_name, field)

	Return a default index name for the database.

This will return an index name for the given field that matches what
the database or Django database backend would automatically generate
when marking a field as indexed or unique.

This can be overridden by subclasses if the database or Django
database backend provides different values.

	Parameters:

	
	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table for the index.

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field for the index.

	Returns:

	The name of the index.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_indexes_for_table(table_name)

	Return all known indexes on a table.

This is a fallback used only on Django 1.6, due to lack of proper
introspection on that release.

	Parameters:

	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	Returns:

	A dictionary mapping index names to a dictionary containing:

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]):
	The list of columns that the index covers.

	unique (bool [https://docs.python.org/3/library/functions.html#bool]):
	Whether this is a unique index.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
normalize_bool(value)

	

	
change_column_attr_decimal_type(model, mutation, field, new_max_digits, new_decimal_places)

	Return SQL for changing a column’s max digits and decimal places.

This is used for DecimalField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.DecimalField] and
subclasses to change the maximum number of digits or decimal places.
As these are used together as a column type, they must be considered
together as one attribute change.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The model class that owns the field.

	mutation (django_evolution.mutations.BaseModelMutation) – The mutation applying this change.

	field (django.db.models.DecimalField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.DecimalField]) – The field being modified.

	new_max_digits (int [https://docs.python.org/3/library/functions.html#int]) – The new value for max_digits. If None, it wasn’t
provided in the attribute change.

	new_decimal_places (int [https://docs.python.org/3/library/functions.html#int]) – The new value for decimal_places. If None, it wasn’t
provided in the attribute change.

	Returns:

	The SQL for modifying the value.

	Return type:

	django_evolution.db.sql_result.AlterTableSQLResult

django_evolution.db.sql_result

Classes for storing SQL statements and Alter Table operations.

Classes

	AlterTableSQLResult(evolver, model[, ...])

	Represents one or more SQL statements or Alter Table rules.

	SQLResult([sql, pre_sql, post_sql])

	Represents one or more SQL statements.

	
class django_evolution.db.sql_result.SQLResult(sql=None, pre_sql=None, post_sql=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents one or more SQL statements.

This is returned by functions generating SQL statements. It can store
the main SQL statements to execute, or SQL statements to be executed before
or after the main statements.

SQLResults can easily be added together or converted into a flat list of
SQL statements to execute.

	
__init__(sql=None, pre_sql=None, post_sql=None)

	

	
add(sql_or_result)

	Adds a list of SQL statements or an SQLResult.

If an SQLResult is passed, its pre_sql, sql, and post_sql
lists will be added to this one.

If a list of SQL statements is passed, it will be added to this
SQLResult’s sql list.

	Parameters:

	sql_or_result (object [https://docs.python.org/3/library/functions.html#object]) – The SQL to add. This may be one of the following:

	Anopther instance of SQLResult

	A list of SQL statements

	A single SQL statement

	A tuple pair containing the SQL statement and arguments
for that statement

	A function to call later when executing SQL statements

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – sql_or_result wasn’t a supported type.

	
add_pre_sql(sql_or_result)

	Adds a list of SQL statements or an SQLResult to pre_sql.

If an SQLResult is passed, it will be converted into a list of SQL
statements.

	
add_sql(sql_or_result)

	Adds a list of SQL statements or an SQLResult to sql.

If an SQLResult is passed, it will be converted into a list of SQL
statements.

	
add_post_sql(sql_or_result)

	Adds a list of SQL statements or an SQLResult to post_sql.

If an SQLResult is passed, it will be converted into a list of SQL
statements.

	
normalize_sql(sql_or_result)

	Normalizes a list of SQL statements or an SQLResult into a list.

If a list of SQL statements is provided, it will be returned. If
an SQLResult is provided, it will be converted into a list of SQL
statements and returned.

	
to_sql()

	Flattens the SQLResult into a list of SQL statements.

	
__repr__()

	Return repr(self).

	
class django_evolution.db.sql_result.AlterTableSQLResult(evolver, model, alter_table=None, *args, **kwargs)

	Bases: SQLResult

Represents one or more SQL statements or Alter Table rules.

This is returned by functions generating SQL statements. It can store
the main SQL statements to execute, or SQL statements to be executed before
or after the main statements.

SQLResults can easily be added together or converted into a flat list of
SQL statements to execute.

	
__init__(evolver, model, alter_table=None, *args, **kwargs)

	

	
add(sql_result)

	Adds a list of SQL statements or an SQLResult.

If an SQLResult is passed, its pre_sql, sql, and post_sql
lists will be added to this one.

If an AlterTableSQLResult is passed, its alter_table lists will
also be added to this one.

If a list of SQL statements is passed, it will be added to this
SQLResult’s sql list.

	
add_alter_table(alter_table)

	Adds a list of Alter Table rules to alter_table.

	
to_sql()

	Flattens the AlterTableSQLResult into a list of SQL statements.

Any alter_table entries will be collapsed together into
ALTER TABLE statements.

	
__repr__()

	Return repr(self).

django_evolution.db.sqlite3

Evolution operations backend for SQLite.

Classes

	EvolutionOperations(database_state[, connection])

	Evolution operations backend for SQLite.

	SQLiteAlterTableSQLResult(evolver, model[, ...])

	Represents SQL statements used to rebuild a table on SQLite.

	
class django_evolution.db.sqlite3.SQLiteAlterTableSQLResult(evolver, model, alter_table=None, *args, **kwargs)

	Bases: AlterTableSQLResult

Represents SQL statements used to rebuild a table on SQLite.

Unlike most databases, SQLite doesn’t offer typical ALTER TABLE support,
instead requiring a full table rebuild and data transfer. This class
handles that process, allowing operations for the rebuild (adding,
deleting, or changing columns) to be batched together.

The rebuild uses the step-by-step instructions recommended by SQLite. It
creates a new table with the desired schema, copies all data from the old
table, drops the old table, and then renames the new table over.

It can also update the newly-populated rows in the new table with new
initial data, if needed by a new column.

	
to_sql()

	Return a list of SQL statements for the table rebuild.

Any alter_table operations will be collapsed together into
a single table rebuild.

	Returns:

	The list of SQL statements to run for the rebuild.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.db.sqlite3.EvolutionOperations(database_state, connection=<django.db.DefaultConnectionProxy object>)

	Bases: BaseEvolutionOperations

Evolution operations backend for SQLite.

	
name = 'SQLite'

	The name of the database type.

New in version 2.3.

	
supported_change_meta = {'constraints': True, 'db_table_comment': False, 'index_together': True, 'indexes': True, 'unique_together': True}

	

	
alter_table_sql_result_cls

	alias of SQLiteAlterTableSQLResult

	
get_deferrable_sql()

	Return the SQL for marking a reference as deferrable.

Despite SQLite3 supporting this, the Django SQLite3 backend does not
implement the standard function
(BaseDatabaseOperations.deferrable_sql()) for
this.

This provides a value used internally for building references.

New in version 2.2.

	Returns:

	The SQL for marking a reference as deferrable.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
rename_table(model, old_db_table, new_db_table)

	Rename a table.

	Parameters:

	
	model (django_evolution.mock_models.MockModel) – The model representing the table to rename.

	old_db_table (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The old table name.

	new_db_table (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The new table name.

	Returns:

	The resulting SQL for renaming the table.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
delete_column(model, field)

	Delete a column from the table.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model] class representing
the table to delete the column from.

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field representing the column to delete.

	Returns:

	The resulting SQL for rebuilding the table.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
rename_column(model, old_field, new_field)

	Rename a column on a table.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model] class representing
the table to rename the column on.

	old_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field representing the old column.

	new_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field representing the new column.

	Returns:

	The resulting SQL for rebuilding the table.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
add_column(model, field, initial)

	Add a column to the table.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model] class representing
the table to add the column to.

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field representing the column to add.

	initial (object [https://docs.python.org/3/library/functions.html#object]) – The initial data to set for the column. If None, the
data will not be set.

This will be required for NOT NULL columns.

	Returns:

	The resulting SQL for rebuilding the table.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
change_column_attr_null(model, mutation, field, old_value, new_value)

	Change a column’s NULL flag.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model] class representing
the table to change the column on.

	mutation (django_evolution.mutations.BaseModelMutation) – The mutation making this change.

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field representing the column to change.

	old_value (bool [https://docs.python.org/3/library/functions.html#bool], unused) – The old null flag.

	new_value (bool [https://docs.python.org/3/library/functions.html#bool]) – The new null flag.

	Returns:

	The resulting SQL for rebuilding the table.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
change_column_attr_decimal_type(model, mutation, field, new_max_digits, new_decimal_places)

	Return SQL for changing a column’s decimal_places attribute.

This is used for DecimalField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.DecimalField] and
subclasses to change the maximum number of digits or decimal places.
As these are used together as a column type, they must be considered
together as one attribute change.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The model class that owns the field.

	mutation (django_evolution.mutations.BaseModelMutation) – The mutation applying this change.

	field (django.db.models.DecimalField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.DecimalField]) – The field being modified.

	new_max_digits (int [https://docs.python.org/3/library/functions.html#int]) – The new value for max_digits. If None, it wasn’t
provided in the attribute change.

	new_decimal_places (int [https://docs.python.org/3/library/functions.html#int]) – The new value for decimal_places. If None, it wasn’t
provided in the attribute change.

	Returns:

	The SQL for modifying the value.

	Return type:

	django_evolution.db.sql_result.AlterTableSQLResult

	
change_column_attr_max_length(model, mutation, field, old_value, new_value)

	Change a column’s max length.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model] class representing
the table to change the column on.

	mutation (django_evolution.mutations.BaseModelMutation) – The mutation making this change.

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field representing the column to change.

	old_value (int [https://docs.python.org/3/library/functions.html#int], unused) – The old max length.

	new_value (int [https://docs.python.org/3/library/functions.html#int], unused) – The new max length.

	Returns:

	The resulting SQL for rebuilding the table.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
change_column_type(model, old_field, new_field, new_attrs)

	Return SQL to change the type of a column.

New in version 2.2.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The type of model owning the field.

	old_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The old field.

	new_field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The new field.

	new_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – New attributes set in the

ChangeField.

	Returns:

	The SQL statements for changing the column type.

	Return type:

	SQLiteAlterTableSQLResult

	
get_change_unique_sql(model, field, new_unique_value, constraint_name, initial)

	Change a column’s unique flag.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model] class representing
the table to change the column on.

	mutation (django_evolution.mutations.BaseModelMutation) – The mutation making this change.

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field representing the column to change.

	old_value (bool [https://docs.python.org/3/library/functions.html#bool], unused) – The old unique flag.

	new_value (bool [https://docs.python.org/3/library/functions.html#bool], unused) – The new unique flag.

	Returns:

	The resulting SQL for rebuilding the table.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
get_update_table_constraints_sql(model, old_constraints, new_constraints, to_add, to_remove)

	Return SQL for updating the constraints on a table.

This will perform a table rebuild, including only any new constraints
in the new schema.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model being changed.

	old_constraints (list [https://docs.python.org/3/library/stdtypes.html#list] of :class:`` django.db.models.constraints.BaseConstraint) – The old constraints pre-evolution.

	new_constraints (list [https://docs.python.org/3/library/stdtypes.html#list] of :class:`` django.db.models.constraints.BaseConstraint) – The new constraints post-evolution.

	to_add (list [https://docs.python.org/3/library/stdtypes.html#list] of django.db.models.constraints.BaseConstraint) – A list of new constraints to add to the database that weren’t
set before.

	to_remove (list [https://docs.python.org/3/library/stdtypes.html#list] of django.db.models.constraints.BaseConstraint) – A list of old constraints to remove from the database that
aren’t set now.

	Returns:

	The SQL statements for changing the constraints.

	Return type:

	django_evolution.sql_result.SQLResult

	
change_column_attr_db_index(model, mutation, field, old_value, new_value)

	Return the SQL for creating/dropping indexes for a column.

If setting db_index=True, SQL for generating the index will be
returned immediately.

If setting db_index=False, the dropping of the index will be
scheduled as an Alter Table operation, ensuring it’s dropped
immediately (and cached/queued database index state updated) before the
table is rebuilt, never later.

New in version 2.3.

	Parameters:

	
	model (django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The model being changed.

	mutation (django_evolution.mutations.BaseModelMutation) – The mutation applying this change.

	field (django.db.models.DecimalField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.DecimalField]) – The field being modified.

	old_value (bool [https://docs.python.org/3/library/functions.html#bool]) – The old value for db_index.

	new_value (bool [https://docs.python.org/3/library/functions.html#bool]) – The new value for db_index.

	Returns:

	The resulting SQL for creating the index or scheduling a drop.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
get_drop_unique_constraint_sql(model, index_name)

	Return SQL for dropping unique constraints.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model] class representing
the table to drop unique constraints on.

	index_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the unique constraint index to drop.

	Returns:

	The resulting SQL for rebuilding the table.

	Return type:

	django_evolution.db.sql_result.SQLResult

	
get_indexes_for_table(table_name)

	Return all known indexes on a table.

This is a fallback used only on Django 1.6, due to lack of proper
introspection on that release.

	Parameters:

	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	Returns:

	A dictionary mapping index names to a dictionary containing:

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]):
	The list of columns that the index covers.

	unique (bool [https://docs.python.org/3/library/functions.html#bool]):
	Whether this is a unique index.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
is_column_referenced(reffed_table_name, reffed_col_name)

	Return whether a column on a table is referenced by another table.

	Parameters:

	
	reffed_table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table that may be referenced.

	reffed_col_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the column that may be referenced.

	Returns:

	True if this table and column are referenced by another table,
or False if it’s not referenced.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

django_evolution.db.state

Database state tracking for in-progress evolutions.

Classes

	DatabaseState(db_name[, scan])

	Tracks some useful state in the database.

	IndexState(name[, columns, unique])

	An index recorded in the database state.

	
class django_evolution.db.state.IndexState(name, columns=[], unique=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An index recorded in the database state.

	
__init__(name, columns=[], unique=False)

	Initialize the index state.

	Parameters:

	
	name (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the index.

	columns (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – A list of columns that the index is comprised of.

	unique (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this is a unique index.

	
__eq__(other_state)

	Return whether two index states are equal.

	Parameters:

	other_state (IndexState) – The other index state to compare to.

	Returns:

	True if the two index states are equal. False if they
are not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__hash__()

	Return a hash representation of the index.

	Returns:

	The hash representation.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
__repr__()

	Return a string representation of the index state.

	Returns:

	A string representation of the index.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.db.state.DatabaseState(db_name, scan=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Tracks some useful state in the database.

This primarily tracks indexes associated with tables, allowing them to be
scanned from the database, explicitly added, removed, or cleared.

	
__init__(db_name, scan=True)

	Initialize the state.

	Parameters:

	
	db_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.

	scan (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to automatically scan state from the database during
initialization. By default, information is scanned.

	
clone()

	Clone the database state.

	Returns:

	The cloned copy of the state.

	Return type:

	DatabaseState

	
add_table(table_name)

	Add a table to track.

This will add an empty entry for the table to the state.

	Parameters:

	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	
has_table(table_name)

	Return whether a table is being tracked.

This does not necessarily mean that the table exists in the database.
Rather, state for the table is being tracked.

	Parameters:

	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table to look up.

	Returns:

	True if the table is being tracked. False if it is not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
has_model(model)

	Return whether a database model is installed in the database.

	Parameters:

	model (type [https://docs.python.org/3/library/functions.html#type]) – The model class.

	Returns:

	True if the model has an accompanying table in the database.
False if it does not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
add_index(table_name, index_name, columns, unique=False)

	Add a table’s index to the database state.

This index can be used for later lookup during the evolution process.
It won’t otherwise be preserved, though the resulting indexes are
expected to match the result in the database.

This requires the table to be tracked first.

	Parameters:

	
	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	index_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the index.

	columns (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]) – A list of column names the index is comprised of.

	unique (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this is a unique index.

	Raises:

	django_evolution.errors.DatabaseStateError – There was an issue adding this index. Details are in the
 exception’s message.

	
remove_index(table_name, index_name, unique=False)

	Remove an index from the database state.

This index will no longer be found during lookups when generating
evolution SQL, even if it exists in the database.

This requires the table to be tracked first and for the index to
both exist and match the unique flag.

	Parameters:

	
	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	index_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the index.

	unique (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this is a unique index.

	Raises:

	django_evolution.errors.DatabaseStateError – There was an issue removing this index. Details are in the
 exception’s message.

	
get_index(table_name, index_name, unique=False)

	Return the index state for a given name.

	Parameters:

	
	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	index_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the index.

	unique (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this is a unique index.

New in version 2.2.

	Returns:

	The state for the index, if found. None if the index could not
be found.

	Return type:

	IndexState

	
find_index(table_name, columns, unique=False)

	Find and return an index matching the given columns and flags.

	Parameters:

	
	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	columns (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The list of columns the index is comprised of.

	unique (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this is a unique index.

	Returns:

	The state for the index, if found. None if an index matching
the criteria could not be found.

	Return type:

	IndexState

	
clear_indexes(table_name)

	Clear all recorded indexes for a table.

	Parameters:

	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	
iter_indexes(table_name)

	Iterate through all indexes for a table.

	Parameters:

	table_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	Yields:

	IndexState – An index in the table.

	
rescan_tables()

	Rescan the list of tables from the database.

This will look up all tables found in the database, along with
information (such as indexes) on those tables.

Existing information on the tables will be flushed.

django_evolution.utils.apps

Utilities for working with apps.

Functions

	get_app_config_for_app(app)

	Return the app configuration for an app.

	get_app_label(app)

	Return the label of an app.

	get_app_name(app)

	Return the name of an app.

	get_legacy_app_label(app)

	Return the label of an app.

	import_management_modules()

	Import the management modules for all apps.

	
django_evolution.utils.apps.get_app_config_for_app(app)

	Return the app configuration for an app.

This can only be called if running on Django 1.7 or higher.

	Parameters:

	app (module) – The app’s models module to return the configuration for.
The models module is used for legacy reasons within Django
Evolution.

	Returns:

	The app configuration, or None if it couldn’t be found.

	Return type:

	django.apps.AppConfig [https://docs.djangoproject.com/en/3.1/ref/applications/#django.apps.AppConfig]

	
django_evolution.utils.apps.get_app_label(app)

	Return the label of an app.

	Parameters:

	app (module) – The app.

	Returns:

	The label of the app.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.utils.apps.get_app_name(app)

	Return the name of an app.

	Parameters:

	app (module) – The app.

	Returns:

	The name of the app.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.utils.apps.get_legacy_app_label(app)

	Return the label of an app.

	Parameters:

	app (module) – The app.

	Returns:

	The label of the app.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.utils.apps.import_management_modules()

	Import the management modules for all apps.

Management modules often contain signal handlers for pre/post
syncdb/migrate events. This will import them correctly for the current
version of Django.

	Raises:

	ImportError [https://docs.python.org/3/library/exceptions.html#ImportError] – A management module failed to import.

django_evolution.utils.datastructures

Utilities for working with data structures.

New in version 2.1.

Functions

	filter_dup_list_items(items)

	Return list items with duplicates filtered out.

	merge_dicts(dest, source)

	Merge two dictionaries together.

	
django_evolution.utils.datastructures.filter_dup_list_items(items)

	Return list items with duplicates filtered out.

The order of items will be preserved, but only the first occurrence of
any given item will remain in the list.

New in version 2.1.

	Parameters:

	items (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of items.

	Returns:

	The resulting de-duplicated list of items.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
django_evolution.utils.datastructures.merge_dicts(dest, source)

	Merge two dictionaries together.

This will recursively merge a source dictionary into a destination
dictionary with the following rules:

	Any keys in the source that aren’t in the destination will be placed
directly to the destination (using the same instance of the value, not
a copy).

	Any lists that are in both the source and destination will be combined
by appending the source list to the destinataion list (and this will not
recurse into lists).

	Any dictionaries that are in both the source and destinataion will be
merged using this function.

	Any keys that are not a list or dictionary that exist in both
dictionaries will result in a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError].

New in version 2.1.

	Parameters:

	
	dest (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The destination dictionary to merge into.

	source (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The source dictionary to merge into the destination.

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – A key was present in both dictionaries with a type that could not
 be merged.

django_evolution.utils.evolutions

Utilities for working with evolutions and mutations.

Functions

	get_app_mutations(app[, evolution_labels, ...])

	Return the mutations on an app provided by the given evolution names.

	get_app_pending_mutations(app[, ...])

	Return an app's pending mutations provided by the given evolution names.

	get_app_upgrade_info(app[, scan_evolutions, ...])

	Return the upgrade information to use for a given app.

	get_applied_evolutions(app[, database])

	Return the list of labels for applied evolutions for a Django app.

	get_evolution_app_dependencies(app)

	Return dependencies governing all evolutions for an app.

	get_evolution_dependencies(app, evolution_label)

	Return dependencies for an evolution.

	get_evolution_module(app, evolution_label)

	Return the module for a given evolution for an app.

	get_evolution_sequence(app)

	Return the list of evolution labels for a Django app.

	get_evolutions_module(app)

	Return the evolutions module for an app.

	get_evolutions_module_name(app)

	Return the name of the evolutions module for an app.

	get_evolutions_path(app)

	Return the evolutions path for an app.

	get_evolutions_source(app)

	Return the source for evolutions.

	get_unapplied_evolutions(app[, database])

	Return the list of labels for unapplied evolutions for a Django app.

	has_evolutions_module(app)

	Return whether an app has an evolutions module.

	
django_evolution.utils.evolutions.has_evolutions_module(app)

	Return whether an app has an evolutions module.

	Parameters:

	app (module) – The app module.

	Returns:

	True if the app has an evolutions module. False if it
does not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.utils.evolutions.get_evolutions_source(app)

	Return the source for evolutions.

This is used to determine where evolutions are coming from. They can be
provided by the app, project, or built into Django Evolution.

	Parameters:

	app (module) – The app module.

	Returns:

	The evolution source. This is an entry from
EvolutionsSource.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.utils.evolutions.get_evolutions_module_name(app)

	Return the name of the evolutions module for an app.

New in version 2.1.

	Parameters:

	app (module) – The app.

	Returns:

	The name of the evolutions module for the app. This is not guaranteed
to be importable.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.utils.evolutions.get_evolutions_module(app)

	Return the evolutions module for an app.

	Parameters:

	app (module) – The app.

	Returns:

	The evolutions module for the app, or None if it could not be
found.

	Return type:

	module

	
django_evolution.utils.evolutions.get_evolution_module(app, evolution_label)

	Return the module for a given evolution for an app.

New in version 2.1.

	Parameters:

	
	app (module) – The app.

	evolution_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the evolution.

	Returns:

	The evolution module, or None if it could not be found.

	Return type:

	module

	
django_evolution.utils.evolutions.get_evolutions_path(app)

	Return the evolutions path for an app.

	Parameters:

	app (module) – The app.

	Returns:

	The path to the evolutions module for the app, or None if it
could not be found.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.utils.evolutions.get_evolution_sequence(app)

	Return the list of evolution labels for a Django app.

	Parameters:

	app (module) – The app to return evolutions for.

	Returns:

	The list of evolution labels.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.utils.evolutions.get_evolution_dependencies(app, evolution_label, custom_evolutions=[])

	Return dependencies for an evolution.

Evolutions can depend on other evolutions or migrations, and can be
marked as being a dependency of them as well (forcing the evolution to
apply before another evolution/migration).

Dependencies are generally specified as a tuple of (app_label, name),
where name is either a migration name or an evolution label.

Dependencies on evolutions can also be specified as simply a string
containing an app label, which will reference the sequence of evolutions
as a whole for that app.

Changed in version 2.2: Added the custom_evolutions argument.

New in version 2.1.

	Parameters:

	
	app (module) – The app the evolution is for.

	evolution_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label identifying the evolution for the app.

	custom_evolutions (list [https://docs.python.org/3/library/stdtypes.html#list] of dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – An optional list of custom evolutions pertaining to the app, which
will be searched if a module for evolution_label could not
be found.

Each item is a dictionary containing:

	Keys:

	
	label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The evolution label (which evolution_label will be
compared against).

	after_evolutions (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – A list of evolutions that this would apply after. Each
item can be a string (indicating an evolution label within
this app) or a tuple in the form of:

(‘app_label’, ‘evolution_label’)

	after_migrations (list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – A list of migrations that this would apply after. Each
item must be a tuple in the form of:

(‘app_label’, ‘migration_name’)

	after_evolutions (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – A list of evolutions that this would apply before. Each
item can be a string (indicating an evolution label within
this app) or a tuple in the form of:

(‘app_label’, ‘evolution_label’)

	after_migrations (list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – A list of migrations that this would apply before. Each
item must be a tuple in the form of:

(‘app_label’, ‘migration_name’)

New in version 2.2.

	Returns:

	A dictionary of dependency information for the evolution. This has
the following keys:

	before_migrations

	after_migrations

	before_evolutions

	after_evolutions

If the evolution module was not found, this will return None
instead.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
django_evolution.utils.evolutions.get_evolution_app_dependencies(app)

	Return dependencies governing all evolutions for an app.

These dependencies are defined in an evolutions/__init__.py file,
and will ensure that other evolutions or migrations apply either before
or after the app’s evolutions.

Dependencies are generally specified as a tuple of (app_label, name),
where name is either a migration name or an evolution label.

Dependencies on evolutions can also be specified as simply a string
containing an app label, which will reference the sequence of evolutions
as a whole for that app.

New in version 2.1.

	Parameters:

	app (module) – The app the evolution is for.

	Returns:

	A dictionary of dependency information for the app. This has the
following keys:

	before_migrations

	after_migrations

	before_evolutions

	after_evolutions

If the evolutions module was not found, this will return None
instead.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
django_evolution.utils.evolutions.get_unapplied_evolutions(app, database='default')

	Return the list of labels for unapplied evolutions for a Django app.

	Parameters:

	
	app (module) – The app to return evolutions for.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database containing the
Evolution entries.

	Returns:

	The labels of evolutions that have not yet been applied.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.utils.evolutions.get_applied_evolutions(app, database='default')

	Return the list of labels for applied evolutions for a Django app.

	Parameters:

	
	app (module) – The app to return evolutions for.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database containing the
Evolution entries.

	Returns:

	The labels of evolutions that have been applied.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.utils.evolutions.get_app_mutations(app, evolution_labels=None, database='default')

	Return the mutations on an app provided by the given evolution names.

	Parameters:

	
	app (module) – The app the evolutions belong to.

	evolution_labels (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The labels of the evolutions to return mutations for.

If None, this will factor in all evolution labels for the
app.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database the evolutions cover.

	Returns:

	The list of mutations provided by the evolutions.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of django_evolution.mutations.BaseMutation

	Raises:

	django_evolution.errors.EvolutionException – One or more evolutions are missing.

	
django_evolution.utils.evolutions.get_app_pending_mutations(app, evolution_labels=[], mutations=None, old_project_sig=None, project_sig=None, database='default')

	Return an app’s pending mutations provided by the given evolution names.

This is similar to get_app_mutations(), but filters the list
of mutations down to remove any that are unnecessary (ones that do not
operate on changed parts of the project signature).

	Parameters:

	
	app (module) – The app the evolutions belong to.

	evolution_labels (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The labels of the evolutions to return mutations for.

If None, this will factor in all evolution labels for the
app.

	mutations (list [https://docs.python.org/3/library/stdtypes.html#list] of django_evolution.mutations.BaseMutation, optional) – An explicit list of mutations to use. If provided,
evolution_labels will be ignored.

	old_project_sig (django_evolution.signature.ProjectSignature, optional) – A pre-fetched old project signature. If provided, this will be
used instead of the latest one in the database.

	project_sig (django_evolution.signature.ProjectSignature, optional) – A project signature representing the current state of the database.
If provided, this will be used instead of generating a new one
from the current database state.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the database the evolutions cover.

	Returns:

	The list of mutations provided by the evolutions.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of django_evolution.mutations.BaseMutation

	Raises:

	django_evolution.errors.EvolutionException – One or more evolutions are missing.

	
django_evolution.utils.evolutions.get_app_upgrade_info(app, scan_evolutions=True, simulate_applied=False, database=None)

	Return the upgrade information to use for a given app.

This will determine if the app should be using Django Evolution or
Django Migrations for any schema upgrades.

If an evolutions module is found, then this will determine the method
to be UpgradeMethod.EVOLUTIONS, unless the app has
been moved over to using Migrations.

If instead there’s a migrations module, then this will determine
the method to be UpgradeMethod.MIGRATIONS.

Otherwise, this will return None, indicating that no established
method has been chosen. This allows a determination to be made later,
based on the Django version or the consumer’s choice.

Note that this may return that migrations are the preferred method for
an app even on versions of Django that do not support migrations. It’s
up to the caller to handle this however it chooses.

	Parameters:

	
	app (module) – The app module to determine the upgrade method for.

	scan_evolutions (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to scan evolutions for the app to determine the current
upgrade method.

	simulate_applied (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return the upgrade method based on the state of the app if all
mutations had been applied. This is useful for generating end
state signatures.

This is ignored if passing scan_evolutions=False.

	database (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The database to use for accessing stored evolution and migration
information.

	Returns:

	A dictionary of information containing the following keys:

	applied_migrations (MigrationList):
	A list of migrations that have been applied to this app through
any mutations. This will only be present if the upgrade method is
set to use migrations and if running on a version of Django that
supports migrations.

	has_evolutions (bool [https://docs.python.org/3/library/functions.html#bool]):
	Whether there are any evolutions for this app. This may come from
the app, project, or Django Evolution.

	has_migrations (bool [https://docs.python.org/3/library/functions.html#bool]):
	Whether there are any migrations for this app.

	upgrade_method (unicode):
	The upgrade method. This will be a value from
UpgradeMethod, or None
if a clear determination could not be made.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

django_evolution.utils.graph

Dependency graphs for tracking and ordering evolutions and migrations.

New in version 2.1.

Classes

	DependencyGraph()

	A graph tracking dependencies between nodes.

	EvolutionGraph(*args, **kwargs)

	A graph tracking dependencies between migrations and evolutions.

	Node(key, insert_index, state)

	A node in a graph.

Exceptions

	NodeNotFoundError(key)

	A requested node could not be found.

	
exception django_evolution.utils.graph.NodeNotFoundError(key)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

A requested node could not be found.

New in version 2.1.

	
__init__(key)

	Initialize the error.

	Parameters:

	key (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The key corresponding to the missing node.

	
class django_evolution.utils.graph.Node(key, insert_index, state)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A node in a graph.

Each node is associated with a key, and tracks caller-provided state,
dependency relations (in both directions), and an insertion order (for
loose sorting).

New in version 2.1.

	
dependencies

	Any other nodes that this node depends on.

	Type:

	set [https://docs.python.org/3/library/stdtypes.html#set] of Node

	
insert_index

	An index defining when this was added to the graph, relative to
other nodes.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
key

	The key identifying this node.

	Type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
required_by

	Any other nodes that have this node as a dependency.

	Type:

	set [https://docs.python.org/3/library/stdtypes.html#set] of Node

	
state

	Tracked state provided by the caller.

	Type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
__init__(key, insert_index, state)

	Initialize the node.

	Parameters:

	
	key (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The key identifying this node.

	insert_index (int [https://docs.python.org/3/library/functions.html#int]) – An index defining when this was added to the graph, relative to
other nodes.

	state (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Tracked state provided by the caller.

	
__hash__()

	Return a hash of this node.

The hash will be based on the key.

	Returns:

	The hash for this node.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
__repr__()

	Return a string representation of this node.

	Returns:

	The string representation.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
class django_evolution.utils.graph.DependencyGraph

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A graph tracking dependencies between nodes.

This is used to model relations between objects, indicating which nodes
require which, or are required by others, and then providing a sorted
order based on those relations.

Dependencies can be added at any time, and are only applied once the graph
is finalized. This allows nodes to be added after a dependency referring
to them is added.

New in version 2.1.

	
__init__()

	Initialize the graph.

	
add_node(key, state={})

	Add a node to the graph.

A node can only be added if the graph has not been finalized and if
the key has not already been recorded.

	Parameters:

	
	key (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The key uniquely identifying this node.

	state (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – State to add to the node.

	Returns:

	The resulting node.

	Return type:

	Node

	
add_dependency(node_key, dep_node_key)

	Add a dependency between two nodes.

This will be recorded as a pending dependency and later applied to
the nodes when calling finalize().

	Parameters:

	
	node_key (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The key of the node that depends on another node.

	dep_node_key (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The key of the node that node_key depends on.

	
remove_dependencies(node_keys)

	Remove any pending dependencies referencing one or more keys.

	Parameters:

	node_keys (set [https://docs.python.org/3/library/stdtypes.html#set]) – A set of node keys that should be removed from pending
dependencies.

	
finalize()

	Finalize the graph.

This will apply any dependencies and then mark the graph as finalized.
At this point, orders can be computed, but no new nodes or dependencies
can be added.

	
get_node(key)

	Return a node with a corresponding key.

	Parameters:

	key (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The key associated with the node.

	Returns:

	The resulting node.

	Return type:

	Node

	Raises:

	NodeNotFoundError – The node could not be found.

	
get_leaf_nodes()

	Return all leaf nodes on the graph.

Leaf nodes are nodes that nothing depends on. These are generally the
last evolutions/migrations in any branch of the tree to apply.

	Returns:

	The list of leaf nodes, sorted by their insertion index.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of Node

	
get_ordered()

	Return all nodes in dependency order.

This will perform a topological sort on the graph, returning nodes in
the order they should be processed in.

The graph must be finalized before this is called.

	Returns:

	The list of ndoes, in dependency order.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of Node

	
class django_evolution.utils.graph.EvolutionGraph(*args, **kwargs)

	Bases: DependencyGraph

A graph tracking dependencies between migrations and evolutions.

This is used to model the relationships between all configured migrations
and evolutions, and to generate batches of consecutive migrations or
evolutions that can be applied at once.

Dependencies can be added at any time, and are only applied once the graph
is finalized. This allows nodes to be added after a dependency referring
to them is added.

New in version 2.1.

	
NODE_TYPE_ANCHOR = 'anchor'

	An anchor node.

These are internal, and are used for clustered dependency management.

	
NODE_TYPE_CREATE_MODEL = 'create-model'

	A node that results in model creation.

	
NODE_TYPE_EVOLUTION = 'evolution'

	A node that results in applying a single evolution.

	
NODE_TYPE_MIGRATION = 'migration'

	A node that results in applying a single migration.

	
__init__(*args, **kwargs)

	Initialize the graph.

	Parameters:

	
	*args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Positional arguments for the parent.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for the parent.

	
add_evolutions(app, evolutions=[], new_models=[], extra_state={}, custom_evolutions=[])

	Add a list of evolutions for a given app.

Each evolution will gets its own node, and pending dependencies will
be recorded to ensure the evolutions are applied in the correct order.

A special __first__ anchor node will be added before the sequence
of evolutions, and a __last__ node will be added after. This allows
evolutions to easily reference another app’s list of evolutions
relative to the start or end of a list. It’s used only internally.

Changed in version 2.2: A custom_evolutions argument can now be provided, for
dependency resolution purposes.

	Parameters:

	
	app (module) – The app module the evolutions apply to.

	evolutions (list [https://docs.python.org/3/library/stdtypes.html#list] of django_evolution.models.Evolution, optional) – The list of evolutions to add to the graph. This may be an
empty list if there are no evolutions but there are new
models to create.

	new_models (list [https://docs.python.org/3/library/stdtypes.html#list] of type [https://docs.python.org/3/library/functions.html#type], optional) – The list of database model classes to create for the app.

	extra_state (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Extra state to set in each evolution node.

	custom_evolutions (list [https://docs.python.org/3/library/stdtypes.html#list] of dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – An optional list of custom evolutions for the app, for
dependency resolution.

New in version 2.2.

	
add_migration_plan(migration_plan, migration_graph)

	Add a migration plan to the graph.

Each migration in the plan will gets its own node, and pending
dependencies will be recorded to ensure the migrations are applied in
the order already computed for the plan.

	Parameters:

	
	migration_plan (list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The computed migration plan to add to the graph.

	migration_graph (django.db.migrations.graph.MigrationGraph) – The computed migration graph, used to reference computed
dependencies.

	
mark_evolutions_applied(app, evolution_labels)

	Mark one or more evolutions as applied.

This will remove any pending dependencies referencing these evolutions
from the graph.

	Parameters:

	
	app (module) – The app module the evolutions apply to.

	evolution_labels (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The list of evolutions labels to mark as applied.

	
mark_migrations_applied(migrations)

	Mark one or more migrations as applied.

This will remove any pending dependencies referencing these migrations
from the graph.

	Parameters:

	migrations (django_evolution.utils.migrations.MigrationList) – The list of migrations to mark as applied.

	
iter_batches()

	Iterate through batches of consecutive evolutions and migrations.

The nodes will be iterated in dependency order, with each batch
containing a sequence of either evolutions or migrations that can be
applied at once.

	Yields:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – A 2-tuple containing:

	The batch type (one of NODE_TYPE_CREATE_MODEL,
NODE_TYPE_EVOLUTION, or
NODE_TYPE_MIGRATION).

	A list of Node instances.

django_evolution.utils.migrations

Utility functions for working with Django Migrations.

Functions

	apply_migrations(executor, targets, plan, ...)

	Apply migrations to the database.

	clear_global_custom_migrations()

	Clear the list of custom migrations.

	create_pre_migrate_state(executor)

	Create state needed before migrations are applied.

	emit_post_migrate_or_sync(verbosity, ...)

	Emit the post_migrate and/or post_sync signals.

	emit_pre_migrate_or_sync(verbosity, ...)

	Emit the pre_migrate and/or pre_sync signals.

	filter_migration_targets(targets[, ...])

	Filter migration execution targets based on the given criteria.

	finalize_migrations(post_migrate_state)

	Finalize any migrations operations.

	has_migrations_module(app)

	Return whether an app has a migrations module.

	is_migration_initial(migration)

	Return whether a migration is an initial migration.

	record_applied_migrations(connection, migrations)

	Record a list of applied migrations to the database.

	register_global_custom_migrations(...)

	Register a global list of custom migrations.

	unrecord_applied_migrations(connection, ...)

	Remove the recordings of applied migrations from the database.

Classes

	MigrationExecutor(connection[, ...])

	Load and execute migrations.

	MigrationList()

	A list of applied or pending migrations.

	MigrationLoader(connection[, custom_migrations])

	Loads migration files from disk.

	
class django_evolution.utils.migrations.MigrationList

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A list of applied or pending migrations.

This is used to manage a list of migrations in a way that’s independent
from the underlying representation used in Django. Migrations are tracked
by app label and name, may be associated with a recorded migration
database entry, and can be used to convert state to and from both
signatures and Django migration state.

	
classmethod from_app_sig(app_sig)

	Create a MigrationList based on an app signature.

	Parameters:

	app_sig (django_evolution.signature.AppSignature) – The app signature containing a list of applied migrations.

	Returns:

	The new migration list.

	Return type:

	MigrationList

	
classmethod from_names(app_label, migration_names)

	Create a MigrationList based on a list of migration names.

New in version 2.1.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The app label common to each migration name.

	migration_names (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The list of migration names.

	Returns:

	The new migration list.

	Return type:

	MigrationList

	
classmethod from_database(connection, app_label=None)

	Create a MigrationList based on recorded migrations.

	Parameters:

	
	connection (django.db.backends.base.BaseDatabaseWrapper) – The database connection used to query for migrations.

	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – An app label to filter migrations by.

	Returns:

	The new migration list.

	Return type:

	MigrationList

	
__init__()

	Initialize the list.

	
has_migration_info(app_label, name)

	Return whether the list contains an entry for a migration.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label for the application that was migrated.

	name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the migration.

	Returns:

	True if the migration is in the list. False if it is not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
add_migration_targets(targets)

	Add a list of migration targets to the list.

	Parameters:

	targets (list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The migration targets to each. Each is a tuple containing
an app label and a migration name.

	
add_migration(migration)

	Add a migration to the list.

This can only be called on Django 1.7 or higher.

	Parameters:

	migration (django.db.migrations.Migration) – The migration instance to add.

	
add_recorded_migration(recorded_migration)

	Add a recorded migration to the list.

This can only be called on Django 1.7 or higher.

	Parameters:

	recorded_migration (django.db.migrations.recorder.MigrationRecorder.Migration) – The recorded migration model to add.

	
add_migration_info(app_label, name, migration=None, recorded_migration=None)

	Add information on a migration to the list.

	Parameters:

	
	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The label for the application that was migrated.

	name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the migration.

	migration (django.db.migrations.Migration, optional) – An optional migration instance to associate with this entry.

	recorded_migration (django.db.migrations.recorder.MigrationRecorder.Migration, optional) – An optional recorded migration to associate with this entry.

	
update(other)

	Update the list with the contents of another list.

If there’s an entry in another list matching this one, and contains
information that the entry in this list does not have, this list’s
entry will be updated.

	Parameters:

	other (MigrationList) – The list of migrations to put into this list.

	
to_targets()

	Return a set of migration targets based on this list.

	Returns:

	A set of migration targets. Each entry is a tuple containing
the app label and name.

	Return type:

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
get_app_labels()

	Iterate through the app labels.

Results are sorted alphabetically.

	Returns:

	The sorted list of app labels with associated migrations.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
clone()

	Clone the list.

	Returns:

	The cloned migration list.

	Return type:

	MigrationList

	
__bool__()

	Return whether this list is truthy or falsy.

The list is truthy only if it has items.

	Returns:

	True if the list has items. False if it’s empty.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__len__()

	Return the number of items in the list.

	Returns:

	The number of items in the list.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
__eq__(other)

	Return whether this list is equal to another list.

The order of migrations is ignored when comparing lists.

	Parameters:

	other (MigrationList) – A list of migrations to compare to.

	Returns:

	True if the two lists have the same contents. False if
there are differences in contents, or other is not a
MigrationList.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__iter__()

	Iterate through the list.

Entries are sorted first by app label, alphabetically, and then
the order in which migrations were added for that app label.

	Yields:

	info – A dictionary containing the following keys:

	app_label (unicode):
	The app label for the migration.

	name (unicode):
	The name of the migration.

	migration (django.db.migrations.Migration):
	The optional migration instance.

	recorded_migration (django.db.migrations.recorder.MigrationRecorder.Migration):
	The optional recorded migration.

	
__add__(other)

	Return a combined copy of this list and another list.

	Parameters:

	other (MigrationList) – The other list to add to this list.

	Returns:

	The new migration list containing contents of both lists.

	Return type:

	MigrationList

	
__sub__(other)

	Return a copy of this list with another list’s contents excluded.

	Parameters:

	other (MigrationList) – The other list containing contents to exclude.

	Returns:

	The new migration list containing the contents of this list that
don’t exist in the other list.

	Return type:

	MigrationList

	
__repr__()

	Return a string representation of this list.

	Returns:

	The string representation.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
__hash__ = None

	

	
class django_evolution.utils.migrations.MigrationLoader(connection, custom_migrations=None, *args, **kwargs)

	Bases: MigrationLoader

Loads migration files from disk.

This is a specialization of Django’s own
MigrationLoader that allows for
providing additional migrations not available on disk.

	
extra_applied_migrations

	Migrations to mark as already applied. This can be used to
augment the results calculated from the database.

	Type:

	MigrationList

	
__init__(connection, custom_migrations=None, *args, **kwargs)

	Initialize the loader.

	Parameters:

	
	connection (django.db.backends.base.BaseDatabaseWrapper) – The connection to load applied migrations from.

	custom_migrations (MigrationList, optional) – Custom migrations not available on disk.

	*args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Additional positional arguments for the parent class.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments for the parent class.

	
property applied_migrations

	The migrations already applied.

This will contain both the migrations applied from the database
and any set in extra_applied_migrations.

	
build_graph(reload_migrations=True)

	Rebuild the migrations graph.

	Parameters:

	reload_migrations (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to reload migration instances from disk. If False,
the ones loaded before will be used.

	
load_disk()

	Load migrations from disk.

This will also load any custom migrations.

	
class django_evolution.utils.migrations.MigrationExecutor(connection, custom_migrations=None, signal_sender=None)

	Bases: MigrationExecutor

Load and execute migrations.

This is a specialization of Django’s own
MigrationExecutor that allows
for providing additional migrations not available on disk, and for
emitting our own signals when processing migrations.

	
__init__(connection, custom_migrations=None, signal_sender=None)

	Initialize the executor.

Changed in version 2.2: custom_migrations now defaults to any globally-registered
custom migrations set in
register_global_custom_migrations().

	Parameters:

	
	connection (django.db.backends.base.BaseDatabaseWrapper) – The connection to load applied migrations from.

	custom_migrations (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Custom migrations not available on disk. Each key is a tuple
of (app_label, migration_name), and each value is a
migration.

This defaults to any globally-registered custom migrations.

	signal_sender (object [https://docs.python.org/3/library/functions.html#object], optional) – A custom sender to pass when sending signals. This defaults
to this instance.

	
run_checks()

	Perform checks on the migrations and any history.

	Raises:

	
	django_evolution.errors.MigrationConflictsError – There are conflicts between migrations loaded from disk.

	django_evolution.errors.MigrationHistoryError – There are unapplied dependencies to applied migrations.

	
django_evolution.utils.migrations.register_global_custom_migrations(custom_migrations)

	Register a global list of custom migrations.

These will be used by default when constructing a
MigrationExecutor.

Only one list of custom migrations can be added at a time.

This is primarily useful for unit testing.

New in version 2.2.

	Parameters:

	custom_migrations (MigrationList) – The list of custom migrations.

	Raises:

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – Custom migrations were already registered.

	
django_evolution.utils.migrations.clear_global_custom_migrations()

	Clear the list of custom migrations.

New in version 2.2.

	
django_evolution.utils.migrations.has_migrations_module(app)

	Return whether an app has a migrations module.

	Parameters:

	app (module) – The app module.

	Returns:

	True if the app has a migrations module. False if it
does not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.utils.migrations.record_applied_migrations(connection, migrations)

	Record a list of applied migrations to the database.

This can only be called when on Django 1.7 or higher.

	Parameters:

	
	connection (django.db.backends.base.BaseDatabaseWrapper) – The connection used to record applied migrations.

	migrations (MigrationList) – The list of migration targets to record as applied.

	
django_evolution.utils.migrations.unrecord_applied_migrations(connection, app_label, migration_names=None)

	Remove the recordings of applied migrations from the database.

This can only be called when on Django 1.7 or higher.

	Parameters:

	
	connection (django.db.backends.base.BaseDatabaseWrapper) – The connection used to unrecord applied migrations.

	app_label (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The app label that the migrations pertain to.

	migration_names (list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The list of migration names to unrecord. If not provided, all
migrations for the app will be unrecorded.

	
django_evolution.utils.migrations.filter_migration_targets(targets, app_labels=None, exclude=None)

	Filter migration execution targets based on the given criteria.

	Parameters:

	
	targets (list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The migration targets to be executed.

	app_labels (set [https://docs.python.org/3/library/stdtypes.html#set] of unicode [https://docs.python.org/3/library/stdtypes.html#str], optional) – The app labels to limit the targets to.

	exclude (set [https://docs.python.org/3/library/stdtypes.html#set], optional) – Explicit targets to exclude.

	Returns:

	The resulting list of migration targets.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
django_evolution.utils.migrations.is_migration_initial(migration)

	Return whether a migration is an initial migration.

Initial migrations are those that set up an app or models for the first
time. Generally, they should be limited to model creations, or to those
adding fields to a (non-migration-aware) model for the first time. They
also should not have any dependencies on other migrations within the same
app.

An initial migration should be able to be safely soft-applied (in other
words, ignored if the model already appears to exist in the database).

Migrations on Django 1.9+ may declare themselves as explicitly initial
or explicitly not initial.

	Parameters:

	migration (django.db.migrations.Migration) – The migration to check.

	Returns:

	True if the migration appears to be an initial migration.
False if it does not.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
django_evolution.utils.migrations.create_pre_migrate_state(executor)

	Create state needed before migrations are applied.

The return value is dependent on the version of Django.

	Parameters:

	executor (django.db.migrations.executor.MigrationExecutor) – The migration executor that will handle the migrations.

	Returns:

	The state needed for applying migrations.

	Return type:

	django.db.migrations.state.ProjectState

	
django_evolution.utils.migrations.apply_migrations(executor, targets, plan, pre_migrate_state)

	Apply migrations to the database.

Migrations will be applied using the fake_initial mode, which means
that any initial migrations (those constructing the models for an app)
will be skipped if the models already appear in the database. This is to
avoid issues with applying those migrations when the models have already
been created in the past outside of Django’s Migrations framework. In
theory, this could cause some issues if those migrations also perform
other important operations around data population, but this is really up
to Django to handle, as this is part of the upgrade method when going
from pre-1.7 to 1.7+ anyway.

This can only be called when on Django 1.7 or higher.

	Parameters:

	
	executor (django.db.migrations.executor.MigrationExecutor) – The migration executor that will handle applying the migrations.

	targets (list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The list of migration targets to apply.

	plan (list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The order in which migrations will be applied.

	pre_migrate_state (object [https://docs.python.org/3/library/functions.html#object]) – The pre-migration state needed to apply these migrations.
This must be generated with create_pre_migrate_state()
or a previous call to apply_migrations().

	Returns:

	The state generated from applying migrations. Any final state must
be passed to finalize_migrations().

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
django_evolution.utils.migrations.finalize_migrations(post_migrate_state)

	Finalize any migrations operations.

This will update any internal state in Django for any migrations that
were applied and represented by the provided post-migrate state.

	Parameters:

	post_migrate_state (object [https://docs.python.org/3/library/functions.html#object]) – The state generated from applying migrations. This must be the
result of apply_migrations().

	
django_evolution.utils.migrations.emit_pre_migrate_or_sync(verbosity, interactive, database_name, create_models, pre_migrate_state, plan)

	Emit the pre_migrate and/or pre_sync signals.

This will emit the pre_migrate [https://docs.djangoproject.com/en/3.1/ref/signals/#django.db.models.signals.pre_migrate]
and/or pre_sync signals, providing
the appropriate arguments for the current version of Django.

	Parameters:

	
	verbosity (int [https://docs.python.org/3/library/functions.html#int]) – The verbosity level for output.

	interactive (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether handlers of the signal can prompt on the terminal for
input.

	database_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database being migrated.

	create_models (list [https://docs.python.org/3/library/stdtypes.html#list] of django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The list of models being created outside of any migrations.

	pre_migrate_state (django.db.migrations.state.ProjectState) – The project state prior to any migrations.

	plan (list [https://docs.python.org/3/library/stdtypes.html#list]) – The full migration plan being applied.

	
django_evolution.utils.migrations.emit_post_migrate_or_sync(verbosity, interactive, database_name, created_models, post_migrate_state, plan)

	Emit the post_migrate and/or post_sync signals.

This will emit the post_migrate [https://docs.djangoproject.com/en/3.1/ref/signals/#django.db.models.signals.post_migrate]
and/or post_sync signals, providing
the appropriate arguments for the current version of Django.

	Parameters:

	
	verbosity (int [https://docs.python.org/3/library/functions.html#int]) – The verbosity level for output.

	interactive (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether handlers of the signal can prompt on the terminal for
input.

	database_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database that was migrated.

	created_models (list [https://docs.python.org/3/library/stdtypes.html#list] of django.db.models.Model [https://docs.djangoproject.com/en/3.1/ref/models/instances/#django.db.models.Model]) – The list of models created outside of any migrations.

	post_migrate_state (django.db.migrations.state.ProjectState) – The project state after applying migrations.

	plan (list [https://docs.python.org/3/library/stdtypes.html#list]) – The full migration plan that was applied.

django_evolution.utils.models

Utilities for working with models.

Functions

	clear_model_rel_tree()

	Clear the model relationship tree.

	get_database_for_model_name(app_name, model_name)

	Return the database used for a given model.

	get_model_rel_tree()

	Return the full field relationship tree for all registered models.

	iter_model_fields(model[, ...])

	Iterate through all fields on a model using the given criteria.

	iter_non_m2m_reverse_relations(field)

	Iterate through non-M2M reverse relations pointing to a field.

	walk_model_tree(model)

	Walk through a tree of models.

	
django_evolution.utils.models.get_database_for_model_name(app_name, model_name)

	Return the database used for a given model.

Given an app name and a model name, this will return the proper
database connection name used for making changes to that model. It
will go through any custom routers that understand that type of model.

	Parameters:

	
	app_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the app owning the model.

	model_name (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the model.

	Returns:

	The name of the database used for the model.

	Return type:

	unicode [https://docs.python.org/3/library/stdtypes.html#str]

	
django_evolution.utils.models.walk_model_tree(model)

	Walk through a tree of models.

This will yield the provided model and its parents, in turn yielding
their parents, and so on.

New in version 2.2.

	Parameters:

	model (type [https://docs.python.org/3/library/functions.html#type]) – The top of the model tree to iterate through.

	Yields:

	type [https://docs.python.org/3/library/functions.html#type] – Each model class in the tree.

	
django_evolution.utils.models.get_model_rel_tree()

	Return the full field relationship tree for all registered models.

This will walk through every field in every model registered in Django,
storing the relationships between objects, caching them. Each entry in
the resulting dictionary will be a table mapping to a list of relation
fields that point back at it.

This can be used to quickly locate any and all reverse relations made to
a field.

This is similar to Django’s built-in reverse relation tree used internally
(with different implementations) in
django.db.models.options.Options [https://docs.djangoproject.com/en/3.1/ref/models/meta/#django.db.models.options.Options], but works across all
supported versions of Django, and supports cache clearing.

New in version 2.2.

	Returns:

	The model relation tree.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
django_evolution.utils.models.clear_model_rel_tree()

	Clear the model relationship tree.

This will cause the next call to get_model_rel_tree() to
re-compute the full tree.

New in version 2.2.

	
django_evolution.utils.models.iter_model_fields(model, include_parent_models=True, include_forward_fields=True, include_reverse_fields=False, include_hidden_fields=False, seen_models=None)

	Iterate through all fields on a model using the given criteria.

This is roughly equivalent to Django’s internal
django.db.models.options.Option._get_fields() on Django 1.8+,
but makes use of our model reverse relation tree, and works across all
supported versions of Django.

New in version 2.2.

	Parameters:

	
	model (type [https://docs.python.org/3/library/functions.html#type]) – The model owning the fields.

	include_parent_models (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to include fields defined on parent models.

	include_forward_fields (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to include fields owned by the model (or a parent).

	include_reverse_fields (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to include fields on other models that point to this
model.

	include_hidden_fields (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to include hidden fields.

	seen_models (set [https://docs.python.org/3/library/stdtypes.html#set], optional) – Models seen during iteration. This is intended for internal
use only by this function.

	Yields:

	django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field] – Each field matching the criteria.

	
django_evolution.utils.models.iter_non_m2m_reverse_relations(field)

	Iterate through non-M2M reverse relations pointing to a field.

This will exclude any :py:class:`~django.db.models.ManyToManyField`s,
but will include the relation fields on their “through” tables.

Note that this may return duplicate results, or multiple relations
pointing to the same field. It’s up to the caller to handle this.

New in version 2.2.

	Parameters:

	field (django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field]) – The field that relations must point to.

	Yields:

	django.db.models.Field [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.Field] or object [https://docs.python.org/3/library/functions.html#object] – Each field or relation object pointing to this field.

The type of the relation object depends on the version of Django.

django_evolution.utils.sql

Utilities for working with SQL statements.

Classes

	BaseGroupedSQL(sql)

	Base class for a grouped list of SQL statements.

	NewTransactionSQL(sql)

	A list of SQL statements to execute in its own transaction.

	NoTransactionSQL(sql)

	A list of SQL statements to execute outside of a transaction.

	SQLExecutor(database[, check_constraints])

	Management for the execution of SQL.

	
class django_evolution.utils.sql.BaseGroupedSQL(sql)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for a grouped list of SQL statements.

This is a simple wrapper around a list of SQL statements, used to
group statements under some category defined by a subclass.

	
sql

	A list of SQL statements, as allowed by run_sql().

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
__init__(sql)

	Initialize the group.

	Parameters:

	sql (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of SQL statements, as allowed by run_sql().

	
class django_evolution.utils.sql.NewTransactionSQL(sql)

	Bases: BaseGroupedSQL

A list of SQL statements to execute in its own transaction.

	
class django_evolution.utils.sql.NoTransactionSQL(sql)

	Bases: BaseGroupedSQL

A list of SQL statements to execute outside of a transaction.

	
class django_evolution.utils.sql.SQLExecutor(database, check_constraints=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Management for the execution of SQL.

This allows callers to perform raw SQL queries against the database,
and to do so with a fine degree of transaction management. Callers can
continually add new SQL to execute and, in-between, enter into a new
transaction, ensure a previous transaction is already open, or close out
any existing transaction.

Through this, it can effectively script a set of transactions and queries
in a more loose form than normally allowed by Django.

New in version 2.1.

	
__init__(database, check_constraints=True)

	Initialize the executor.

	Parameters:

	
	database (unicode [https://docs.python.org/3/library/stdtypes.html#str]) – The registered database name where queries will be executed.

	check_constraints (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to check constraints during the execution of SQL.
If disabled, it’s up to the caller to manually invoke a
constraint check.

	
__enter__()

	Enter the context manager.

This will prepare internal state for execution, and optionally disable
constraint checking (if requested during construction).

The context manager must be entered before operations will work.

	Context:

	SQLExecutor – This instance.

	
__exit__(*args, **kwargs)

	Exit the context manager.

This will commit any transaction that may be in progress, close the
database cursor, and re-enable constraint checking if it were
previously disabled.

	Parameters:

	
	*args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], unused) – Unused positional arguments.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], unused) – Unused keyword arguments.

	
new_transaction()

	Start a new transaction.

This will commit any prior transaction, if one exists, and then start
a new one.

	
ensure_transaction()

	Ensure a transaction has started.

If no existing transaction has started, this will start a new one.

	
finish_transaction()

	Finish and commit a transaction.

	
run_sql(sql, capture=False, execute=False)

	Run (execute and/or capture) a list of SQL statements.

	Parameters:

	
	sql (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of SQL statements. Each entry might be a string, a
tuple consisting of a format string and formatting arguments,
or a subclass of BaseGroupedSQL, or a callable
that returns a list of the above.

	capture (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to capture any processed SQL statements.

	execute (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to execute any executed SQL statements and return them.

	Returns:

	The list of SQL statements executed, if passing
capture=True. Otherwise, this will just be an empty list.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of unicode [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	django.db.transaction.TransactionManagementError [https://docs.djangoproject.com/en/3.1/ref/exceptions/#django.db.transaction.TransactionManagementError] – Could not execute a batch of SQL statements inside of an
 existing transaction.

Release Notes

2.x Releases

	Django Evolution 2.3

	Django Evolution 2.2

	Django Evolution 2.1.4

	Django Evolution 2.1.3

	Django Evolution 2.1.2

	Django Evolution 2.1.1

	Django Evolution 2.1

	Django Evolution 2.0

0.7 Releases

	Django Evolution 0.7.8

	Django Evolution 0.7.7

	Django Evolution 0.7.6

	Django Evolution 0.7.5

	Django Evolution 0.7.4

	Django Evolution 0.7.3

	Django Evolution 0.7.2

	Django Evolution 0.7.1

	Django Evolution 0.7

	Django Evolution 0.7 Beta 1

0.6 Releases

	Django Evolution 0.6.9

	Django Evolution 0.6.8

	Django Evolution 0.6.7

	Django Evolution 0.6.6

	Django Evolution 0.6.5

	Django Evolution 0.6.4

	Django Evolution 0.6.3

	Django Evolution 0.6.2

	Django Evolution 0.6.1

	Django Evolution 0.6

0.5 Releases

	Django Evolution 0.5.1

	Django Evolution 0.5

Django Evolution 2.3

Release date: October 15, 2023

Installation

Django Evolution 2.3 is compatible with Django [https://www.djangoproject.com/] 1.6-4.2, and Python 2.7 and
3.6-3.12.

To install Django Evolution 2.3, run:

$ pip3 install django_evolution==2.3

To learn more, see:

	Documentation [https://django-evolution.readthedocs.io/en/latest/]

	Django Evolution on PyPI [https://pypi.org/project/django-evolution/]

	Django Evolution on GitHub [https://github.com/beanbaginc/django-evolution/]

New Features

	Added support for Python 3.12 and Django 4.2.

	Added support for evolving table comments on Django 4.2.

This is done through ChangeMeta.

	Added advanced management commands for working with project signatures and
marking evolutions as applied.

mark-evolution-applied will mark one or more evolutions as
applied to your database, without modifying any schema.

evolution-project-sig will let you list project signatures,
show a stored project signature, or delete project signatures.

These are advanced and dangerous commands. They should only be run if you
know what you’re doing, as part of diagnosing and fixing a failed database
upgrade.

	Added debug logging for the evolution process.

If Python’s logging is set up to enable debug output, then the evolution
process will provide information on the new models generation, mutations,
and evolutions begin run. This can aid in debugging efforts.

Contributors

	Christian Hammond

	David Trowbridge

Django Evolution 2.2

Release date: October 3, 2022

New Features

	Added support for Django 3.2 through 4.1.

This includes full support for django.db.models.Index [https://docs.djangoproject.com/en/3.1/ref/models/indexes/#django.db.models.Index], and
compatibility with database backend changes made in these versions.

	Added support for changing a field’s type in ChangeField.

This can be done by passing in the new field class to field_type=....

	Added a new settings.DJANGO_EVOLUTION setting.

This is in the form of:

DJANGO_EVOLUTION = {
 'CUSTOM_EVOLUTIONS': {
 '<app_label>': ['<evolution_module>', ...],
 },
 'ENABLED': <bool>,
}

This replaces settings.CUSTOM_EVOLUTIONS and
settings.DJANGO_EVOLUTION_ENABLED, both of which are now deprecated
and will emit deprecation warnings.

Bug Fixes

General

	Fixed generating SQL to execute while in a transaction on Django 2.0+.

Indexes/Constraints

	Fixed ordering issues when dropping and re-creating indexes when changing
db_index and unique states.

	Fixed deferring constraints and indexes when injecting new models into the
database.

The constraints and indexes were being added too soon, which could cause
problems when applying more complicated batches of evolution.

	Fixed issues with setting non-string initial data from a callable.

	Fixed attempting to temporarily remove indexes and constraints that
reference models not yet injected into the database.

	Fixed edge cases with the tracking of standard vs. unique indexes in
database state on Django 1.6.

MySQL

	Fixed bad attempts at applying defaults to certain field types.

Django Evolution will no longer apply a default on text, blob,
json, and all short/medium/long variations of those.

Python Compatibiltiy

	Fixed an unintended deprecation warning with the collections [https://docs.python.org/3/library/collections.html#module-collections]
module when running on Python 3.10.

Contributors

	Christian Hammond

	David Trowbridge

Django Evolution 2.1.4

Release date: February 28, 2022

Bug Fixes

	Fixed a crash when applying Django compatibility patches on Django < 2.0
when mysqlclient [https://pypi.org/project/mysqlclient/] isn’t installed.

Contributors

	Christian Hammond

	David Trowbridge

Django Evolution 2.1.3

Release date: January 25, 2022

Compatibility Changes

	Patched compatibility between modern versions of mysqlclient [https://pypi.org/project/mysqlclient/]
and Django <= 1.11.

Django, up through 1.11, attempted to access a bytes key in an internal
mapping on the database connection handle supplied by mysqlclient [https://pypi.org/project/mysqlclient/].
This wasn’t intended to be present, and was due to a Python 2/3
compatibility issue.

They worked around this for a while, but dropped that support in the recent
2.1 release. To maintain compatibility, Django Evolution now patches
Django’s own copy of the mapping table to restore the right behavior.

	Patched Python 3.10+’s collections [https://docs.python.org/3/library/collections.html#module-collections] module to include legacy
imports when using Django 2.0 or older.

Django 2.0 and older made use of some imports that no longer exist on
Python 3.10. Django Evolution will now bring back this support when
running this combination of versions of Django.

Bug Fixes

	During upgrade, evolutions are no longer applied to newly-added models.

	Fixed comparison issues between unique_together state from very old
databases and newer evolutions.

This could lead to issues applying evolutions that only supply a
unique_together baseline, or that differ in terms of using tuples or
lists.

	Fixed an edge case where the django_evolution app could be loaded
too early when setting up a new database, causing crashes.

	Updated to avoid using some deprecated Python and Django functionality.

We had some imports and function calls that were emitting deprecation
warnings, depending on the versions of Python and Django. Code has been
update to use modern imports and calls where possible,

Contributors

	Christian Hammond

	David Trowbridge

Django Evolution 2.1.2

Release date: January 19, 2021

Bug Fixes

	Fixed a regression with adding new non-NULL columns on SQLite databases.

	Fixed a possible data loss bug when changing NULL columns to non-NULL on
SQLite databases.

Contributors

	Christian Hammond

Django Evolution 2.1.1

Release date: January 17, 2021

Bug Fixes

	Fixed changing a DecimalField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.DecimalField]’s
decimal_places and max_digits attributes.

	Changed the “No upgrade required” text to “No database upgrade required.”

While not a bug, this does help avoid confusion when running as part of a
project’s upgrade process, when database changes aren’t the only changes
being made.

Contributors

	Christian Hammond

Django Evolution 2.1

Release date: November 16, 2020

New Features

	Dependency management for evolutions and migrations.

Evolutions can now specify other evolutions and migrations that must be
applied either before or after. This allows evolutions to, for instance,
introduce a model that would be required by another migration (useful for
Django apps that have migrations that depend on a swappable model specified
in settings).

Django Evolution will determine the correct order in which to apply
migrations and evolutions, so as to correctly create or update the database.

Dependencies can be defined per-evolution or per-app. They can depend on
specific evolutions or on app evolutions for an app, or on specific
migrations.

See Adding Dependencies for more information.

	Improved transaction management.

Transactions are managed a bit more closely now, allowing more operations to
be performed in a transaction at a time and for those operations to be
rolled back if anything goes wrong. This should improve reliability of an
upgrade.

Bug Fixes

General

	Fixed the order in which models are created.

There was a regression in 2.0 where models could be created in the wrong
order, causing issues with applying constraints between those models.

	Fixed error messages in places if stored schema signatures were missing.

Previously, some missing schema signatures could lead to outright crashes,
if things went wrong. There’s now checks in more places to ensure there’s
at least a reasonable error message.

MySQL/MariaDB

	Fixed preserving the db_index= values for fields on Django 1.8 through
1.10.

These versions of Django “temporarily” unset the db_index attribute on
fields when generating SQL for creating indexes, and then never restore it.
We now monkey-patch these versions of Django to restore these values.

Contributors

	Christian Hammond

Django Evolution 2.0

Release date: August 13, 2020

New Features

All-New Documentation

We have new documentation [https://django-evolution.readthedocs.io/en/latest/] for Django Evolution, covering installation,
usage, a FAQ, and all release notes.

Support for Python 3

Django Evolution is now fully compatible with Python 2.7 and 3.5 through 3.8,
allowing it to work across all supported versions of Django.

Speaking of that…

Support for Django 1.6 through 3.1

Django Evolution 2.0 supports Django 1.6 through 3.1. Going forward, it will
continue to support newer versions of Django as they come out.

This includes modern features, like Meta.indexes [https://docs.djangoproject.com/en/3.1/ref/models/options/#django.db.models.Options.indexes] and Meta.conditions [https://docs.djangoproject.com/en/3.1/ref/models/options/#django.db.models.Options.constraints].

We can offer this due to the new cooperative support for Django’s schema
migrations.

Compatibility with Django Migrations

Historically, Django Evolution has been a standalone schema migration
framework, and was stuck with supporting versions of Django prior to 1.7,
since evolutions and migrations could not co-exist.

That’s been resolved. Django Evolution now controls the entire process,
applying both migrations and evolutions together, ensuring a smooth upgrade.
Projects get the best of both worlds:

	The ability to use apps that use migrations (most everything, including
Django itself)

	Optimized upgrades for the project’s own evolution-based models (especially
when applying large numbers of evolutions to the same table)

New Evolve Command

In Django Evolution 2.0, the evolve command becomes the sole way of
applying both evolutions and migrations, replacing the migrate/syncdb
commands.

To set up or upgrade a database (using both evolutions and migrations), you’ll
simply run evolve --execute. This will work across all versions of Django.

The old migrate and syncdb commands will still technically work, but
they’ll wrap evolve --execute.

This can all be disabled by setting DJANGO_EVOLUTION_ENABLED = False in
settings.py.

Note

initial_data fixtures will no longer be loaded. These have already
been deprecated in Django, but it’s worth mentioning for users of older
versions of Django.

Also, the migrate command will no longer allow individual migrations
to be applied.

Moving Apps to Migrations

Projects can transition some or all of their apps to migrations once the
last of the evolutions are applied, allowing them to move entirely onto
migrations if needed. This is done with the new
MoveToMigrations mutation.

Simply add one last evolution for an app:

from django_evolution.mutations import MoveToDjangoMigrations

 MUTATIONS = [
 MoveToDjangoMigrations(),
]

This will apply after the last evolution is applied, and from then on all
changes to the models will be controlled via migrations.

Note

Once an app has been moved to migrations, it cannot be moved back to
evolutions.

Improved Database Compatibility

	Support for constraints on modern versions of MySQL/MariaDB.

Modern versions of MySQL and MariaDB are now explicitly supported, allowing
projects using Django 2.2+ to take advantage of CHECK constraints. This
requires MySQL 8.0.16+ or MariaDB 10.2.1+ on Django 3.0+.

	Faster and safer SQLite table rebuilds.

Changes to SQLite databases are now optimized, resulting in far fewer table
rebuilds when changes are made to a model.

	Support for SQLite 3.25+ column renaming.

SQLite 3.25 introduced ALTER TABLE ... RENAME COLUMN syntax, which
is faster than a table rebuild and avoids a lot of issues with preserving
column references.

	We use Django 1.7’s schema rewriting for more of the SQL generation.

This helps ensure future compatibility with new releases of Django, and
allows for leveraging more of Django’s work toward database compatibility.

Project-Defined Custom Evolutions

Projects can provide a new settings.CUSTOM_EVOLUTIONS setting to define
custom evolution modules for apps that don’t otherwise make use of evolutions
or migrations. The value is a mapping of app module names (same ones you’d
see in settings.INSTALLED_APPS to an evolutions module path.

This looks like:

CUSTOM_EVOLUTIONS = {
 'other_project.contrib.foo': 'my_project.compat.foo.evolutions',
}

Evolver API

The entire evolution/migration process can now be controlled programmatically
through the Evolver class. This allows
an entire database, or just select apps, to be evolved without calling out to
a management command.

While most projects will not have a need for this, it’s available to those
that might want some form of specialized control over the evolution process
(for automation, selectively evolving models from an extension/plug-in, or
providing an alternative management/upgrade experience).

During an evolution, new signals are emitted, allowing apps to hook into the
process and perform any updates they might need:

	evolved

	evolving

	evolving_failed

	applying_evolution

	applied_evolution

	applying_migration

	applied_migration

	created_models

	creating_models

New Database Signature Format

Django Evolution stores a representation of the database in the
Version table, in order to track what’s
been applied and what changes have been made since.

Historically, this has used some older structured data schema serialized in
Pickle Protocol 0 format. As of Django Evolution 2.0, it’s now using a new
schema stored in JSON format, which is designed for future extensibility.

Internally, this is represented by a set of classes with a solid API that’s independent of the
storage format. This eases the addition of new features, and makes it easier
to diagnose problems or write custom tools.

Warning

This will impact any SQLMutations that modify a signature. These
will need to be updated to use the new classes, instead of modifying the
older schema dictionaries.

Bug Fixes

SQLite

	Fixed constraint references from other tables when renaming primary key
columns.

	Fixed restoring all table indexes after rebuilding a table.

Contributors

	Christian Hammond

Django Evolution 0.7.8

Release date: June 14, 2018

Packaging

	Eggs and wheels are now built only for Python 2.7.

Older versions of Python are no longer packaged. Source tarballs may work,
but we recommend that anyone still on older versions of Python upgrade at
their earliest convenience.

Bug Fixes

	Fixed an issue generating unique_together constraints on Postgres
in some configurations.

Depending on the table/index names, unique_together constraints could
fail to generate on Posrgres, since the names weren’t being escaped.

Contributors

	Christian Hammond

Django Evolution 0.7.7

Release date: May 25, 2017

New Features

	Added a note about backing up the database and not cancelling before
executing an evolution.

The confirmation prompt for executing an evolution now suggests backing up
the database first. This is only shown in interactive mode.

After the user has confirmed, they’re told it may take time and to not
cancel the upgrade.

	Added more output when performing evolutions for apps.

When evolving the database, a message is now outputted to the console for
each app being evolved. This gives a sense of progress for larger
evolutions.

If the evolution fails, an error message will be shown listing the app that
failed evolution, the specific SQL statement that failed, and the database
error. This can help when diagnosing and recovering from the problem.

	Added an option for writing hinted evolution files.

There’s now an evolve -w/--write option
that can be used with evolve --hint that writes the hinted
evolution to the appropriate directories in the tree. This takes the name
that should be used for the evolution file.

This will not update the evolutions/__init__.py file.

Bug Fixes

	Fixed issues with evolution optimizations when renaming models.

Django Evolution’s evolution optimization code had issues when applying a
series of evolutions that add a ForeignKey [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey]
field to a newly-introduced model that is then renamed in the same batch.
The resulting field would still point to the original model, resulting in a
KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

Contributors

	Christian Hammond

Django Evolution 0.7.6

Release date: December 1, 2015

Bug Fixes

	Fixed a false positive with schema errors when applying evolutions on MySQL.

When applying new evolutions along with baseline schemas for new models, two
version history entries are created, one for the new baselines, and one for
the new, final schema. On MySQL, this can happen so quickly that they’ll end
up with the same timestamp (as there isn’t a lot of precision in these
fields).

Due to internal sort orders, the next evolution then finds the version entry
for the baseline schema, and not the final evolved schema, causing it to
fail saying that there are changes that couldn’t be applied.

This fixes this problem by improving the sorting order.

	Fixed issues evolving certain changes from old database schemas.

Old database schemas didn’t track certain information, like the
index_together information. The code was previously assuming the
existence of this information and failing if it wasn’t there. Evolving from
these older schemas now works.

Contributors

	Barret Rennie

	Christian Hammond

Django Evolution 0.7.5

Release date: April 13, 2015

Bug Fixes

	Mutations on fields with the same name across different models no longer
results in conflicts.

With the new optimizer in Django Evolution 0.7, it was possible for mutations to be
incorrectly optimized out if, for example, a field was added in one model
and then later changed in another model, if both fields had the same name.
This was due to the way in which we mapped mutations, and would result in an
error in the validation stage before attempting any database modifications.
There are no longer any conflicts between same-named field.

	Indexes are no longer created/deleted unnecessarily.

If setting an index for a field, and it already exists in the database,
there’s no longer an attempt at creating it. Likewise, there’s no longer an
attempt at deleting an index that does not exist.

Contributors

	Christian Hammond

Django Evolution 0.7.4

Release date: September 15, 2014

New Features

	Add a RenameModel mutation for handling model renames.

The new RenameModel mutation allows an evolution to
indicate that a model has been renamed. This handles updating the signature
for any related ForeignKey [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey] or
ManyToManyField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ManyToManyField] fields and generating any SQL
to perform the table rename (if needed).

Contributors

	Christian Hammond

Django Evolution 0.7.3

Release date: July 24, 2014

Bug Fixes

	Fixed issues evolving unique_together attributes on models.

When adding unique_together constraints and then changing them within a
single evolve operation, any constraints listed more than once would result
in unnecessary duplicate SQL statements. These would cause errors that would
prevent the transaction from completing.

	Adding and removing a unique_together constraint within an evolve
operation no longer breaks on PostgreSQL.

	Errors importing a database backend on a modern Django no longer results in
unrelated errors about settings.DATABASE_ENGINE.

Contributors

	Christian Hammond

Django Evolution 0.7.2

Release date: June 2, 2014

Bug Fixes

	Fixed a crash from no-op column renames on PostgreSQL.

When attempting to rename a column on PostgreSQL and specifying a “new” name
that was the same as the old name, the result would be a crash. This is
similar to the bug fixed in Django Evolution 0.7.1.

Contributors

	Christian Hammond

Django Evolution 0.7.1

Release date: May 21, 2014

New Features

	Fixed a crash from no-op column renames on MySQL.

When attempting to rename a column on MySQL and specifying a
“new” name that was the same as the old name, the result would
be a crash. Likewise, there were crashes when renaming a
ManyToManyField [https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ManyToManyField].

Contributors

	Christian Hammond

Django Evolution 0.7

Release date: February 3, 2014

Packaging

	Fixed the unit tests module being accidentally bundled with the package.
(Bug #134)

	Fixed the missing NEWS file in the releases. (Bug #130)

Compatibility Changes

	Added compatibility with Django 1.5 and 1.6 (Bug #136).

	Dropped compatibility for versions of Django prior to 1.4.10.

New Features

	Added better support for dealing with indexes in the database.

Django changed how index names were generated over time, leading to issues
when evolving old databases. We now scan the database prior to evolution,
gather the indexes, and look them up based on field data dynamically,
guaranteeing we find the correct index.

It’s also more resilient now when using custom indexes placed by an
administrator.

	Added support for evolving unique_together and index_together
fields.

unique_together was previously stored, but ignored, meaning that changes
to a unique_together would not ever apply to an existing database.

index_together, on the other hand, is new in Django 1.5, and was never
even stored.

There’s now a ChangeMeta mutation that allows for changing
unique_together and index_together.

Models making use of unique_together or index_together will have to
supply evolutions defining the current, correct values. These will appear
when running evolve --hint.

	Optimized the SQL before altering the database.

Mutations are now pre-processed and their output post-processed in order to
reduce the number of table-altering mutations. This should massively reduce
the amount of time it takes to update a database, particularly when there
are multiple AddField, ChangeField, or
DeleteField mutations on a single table.

This is the biggest change in this release, and while it’s been tested on
some large sets of mutations, there may be regressions. Please report any
issues you find.

Custom field mutation classes will need to be updated to work with these
changes.

Bug Fixes

	Fixed a number of issues with constraints on different databases. (Bug #127)

	Fixed an invalid variable reference when loading SQL evolution files.
(Bug #121)

	SQL evolution files no longer break if there are blank lines. (Bug #111)

	Booleans are now normalized correctly when saving in the database. (Bug #125)

Previously, invalid boolean values would be used, causing what should have
been a “false” value to be “true”.

Usage

	The evolve command no longer recommends running evolve --hint --execute,
which can easily cause unwanted problems.

Testing

	Added easier unit testing for multiple database types.

The ./tests/runtests.py script now takes a database type as an argument.
The tests will be run against that type of database.

To make use of this, copy test_db_settings.py.tmpl to
test_db_settings.py and fill in the necessary data.

	Fixed all the known unit test failures.

	Rewrote the test suite for better reporting and maintainability.

Contributors

	Christian Hammond

Django Evolution 0.7 Beta 1

Release date: January 14, 2014

Packaging

	Fixed the unit tests module being accidentally bundled with the package.
(Bug #134)

	Fixed the missing NEWS file in the releases. (Bug #130)

Compatibility Changes

	Added compatibility with Django 1.5 (Bug #136).

	Dropped compatibility for versions of Django prior to 1.4.10.

New Features

	Added better support for dealing with indexes in the database.

Django changed how index names were generated over time, leading to issues
when evolving old databases. We now scan the database prior to evolution,
gather the indexes, and look them up based on field data dynamically,
guaranteeing we find the correct index.

It’s also more resilient now when using custom indexes placed by an
administrator.

	Added support for evolving unique_together and index_together
fields.

unique_together was previously stored, but ignored, meaning that changes
to a unique_together would not ever apply to an existing database.

index_together, on the other hand, is new in Django 1.5, and was never
even stored.

There’s now a ChangeMeta mutation that allows for changing
unique_together and index_together.

Models making use of unique_together or index_together will have to
supply evolutions defining the current, correct values. These will appear
when running evolve --hint.

	Optimized the SQL before altering the database.

Mutations are now pre-processed and their output post-processed in order to
reduce the number of table-altering mutations. This should massively reduce
the amount of time it takes to update a database, particularly when there
are multiple AddField, ChangeField, or
DeleteField mutations on a single table.

This is the biggest change in this release, and while it’s been tested on
some large sets of mutations, there may be regressions. Please report any
issues you find.

Custom field mutation classes will need to be updated to work with these
changes.

Bug Fixes

	Fixed a number of issues with constraints on different databases. (Bug #127)

	Fixed an invalid variable reference when loading SQL evolution files.
(Bug #121)

	SQL evolution files no longer break if there are blank lines. (Bug #111)

	Booleans are now normalized correctly when saving in the database. (Bug #125)

Previously, invalid boolean values would be used, causing what should have
been a “false” value to be “true”.

Usage

	The evolve command no longer recommends running evolve --hint --execute,
which can easily cause unwanted problems.

Testing

	Added easier unit testing for multiple database types.

The ./tests/runtests.py script now takes a database type as an argument.
The tests will be run against that type of database.

To make use of this, copy test_db_settings.py.tmpl to
test_db_settings.py and fill in the necessary data.

	Fixed all the known unit test failures.

	Rewrote the test suite for better reporting and maintainability.

Contributors

	Christian Hammond

Django Evolution 0.6.9

Release date: March 13, 2013

Bug Fixes

	Django Evolution no longer applies upgrades that match the current state.

When upgrading an old database, where a new model has been introduced and
evolutions were added on that model, Django Evolution would try to apply the
mutations after creating that baseline, resulting in confusing errors.

Now we only apply mutations for parts of the database that differ between the
last stored signature and the new signature. It should fix a number of
problems people have hit when upgrading extremely old databases.

Contributors

	Christian Hammond

Django Evolution 0.6.8

Release date: February 8, 2013

New Features

	Added two new management commands: list-evolutions and
wipe-evolution.

list-evolutions lists all applied evolutions. It can take one
or more app labels, and will restrict the output to those apps.

wipe-evolution will wipe one or more evolutions from the
database. This should only be used if absolutely necessary, and can cause
problems. It is useful if there’s some previously applied evolutions getting
in the way, which can happen if a person is uncareful with downgrading and
upgrading again.

Contributors

	Christian Hammond

Django Evolution 0.6.7

Release date: April 12, 2012

Bug Fixes

	Don’t fail when an app doesn’t contain any models.

Installing a baseline for apps without models was failing. The code to
install a baseline evolution assumed that all installed apps would have
models defined, but this wasn’t always true. We now handle this case and
just skip over such apps.

Contributors

	Christian Hammond

Django Evolution 0.6.6

Release date: April 1, 2012

New Features

	Generate more accurate sample evolutions.

The sample evolutions generated with evolve --hint should now
properly take into account import paths for third-party database modules.
Prior to this, such an evolution had to be modified by hand to work.

	Generate PEP-8-compliant sample evolutions.

The evolutions are now generated according to the standards of PEP-8. This
mainly influences blank lines around imports and the grouping of imports.

	Support Django 1.4’s timezone awareness in the
Version model.

The Version model was generating
runtime warnings when creating an instance of the model under Django 1.4,
due to using a naive (non-timezone-aware) datetime. We now try to use
Django’s functionality for this, and fall back on the older methods for
older versions of Django.

Contributors

	Christian Hammond

Django Evolution 0.6.5

Release date: August 15, 2011

New Features

	Added a built-in evolution to remove the Message model in Django 1.4 SVN.

Django 1.4 SVN removes the Message
model from django.contrib.auth [https://docs.djangoproject.com/en/3.1/topics/auth/#module-django.contrib.auth]. This would break evolutions, since
there wasn’t an evolution for this. We now install one if we detect that
the Message model is gone.

Bug Fixes

	Fixed the version association for baseline evolutions for apps.

The new code for installing a baseline evolution for new apps in
Django Evolution 0.6.4 was associating the wrong
Version model with the
Evolution. This doesn’t appear to cause
any real-world problems, but it does make it harder to see the proper
evolution history in the database.

Contributors

	Christian Hammond

Django Evolution 0.6.4

Release date: June 22, 2011

New Features

	Install a baseline evolution history for any new apps.

When upgrading an older database using Django Evolution when a new model
has been added and subsequent evolutions were made on that model, the
upgrade would fail. It would attempt to apply those evolutions on that
model, which, being newly created, would already have those new field
changes.

Now, like with an initial database, we install a baseline evolution
history for any new apps. This will ensure that those evolutions aren’t
applied to the models in that app.

Bug Fixes

	Fixed compatibility with Django SVN in the unit tests.

In Django SVN r16053, get_model() and get_models() only return
installed modules by default. This is calculated in part by a new
AppCache.app_labels dictionary, along with an existing
AppCache.app_store, neither of which we properly populated.

We now set both of these (though, app_labels only on versions of Django
that have it). This allows the unit tests to pass, both with older versions
of Django and Django SVN.

Contributors

	Christian Hammond

Django Evolution 0.6.3

Release date: May 9, 2011

Bug Fixes

	Fixed multi-database support with different database backends.

The multi-database support only worked when the database backends matched.
Now it should work with different types. The unit tests have been verified
to work now with different types of databases.

	Fixed a breaking with PostgreSQL when adding non-null columns with default
values. (Bugs #58 and #74)

Adding new columns that are non-null and have a default value would break
with PostgreSQL when the table otherwise had data in it. The SQL for adding
a column is an ALTER TABLE followed by an UPDATE to set all existing
records to have the new default value. PostgreSQL, however, doesn’t allow
this within the same transaction.

Now we use two ALTER TABLEs. The first adds the column with a default
value, which should affect existing records. The second drops the default.
This should ensure that the tables have the data we expect while at the same
time keeping the field attributes the same as what Django would generate.

Contributors

	Christian Hammond

Django Evolution 0.6.2

Release date: November 19, 2010

New Features

	Add compatibility with Django 1.3.

Django 1.3 introduced a change to the Session.expire_date field’s
schema, setting db_index to True. This caused Django Evolution to
fail during evolution, with no way to provide an evolution file to work
around the problem. Django Evolution now handles this by providing the
evolution when running with Django 1.3 or higher.

Contributors

	Christian Hammond

Django Evolution 0.6.1

Release date: October 25, 2010

Bug Fixes

	Fixed compatibility problems with both Django 1.1 and Python 2.4.

Contributors

	Christian Hammond

Django Evolution 0.6

Release date: October 24, 2010

New Features

	Added support for Django 1.2’s ability to use multiple databases.

This should use the existing routers used in your project. By default,
operations will happen on the ‘default’ database. This can be overridden
during evolution by passing --database=<dbname> to the
evolve command.

Patch by Marc Bee and myself.

Contributors

	Christian Hammond

	Marc Bee

Django Evolution 0.5.1

Release date: October 13, 2010

New Features

	Made the evolve management command raise
CommandError [https://docs.djangoproject.com/en/3.1/howto/custom-management-commands/#django.core.management.CommandError] instead of
sys.exit() [https://docs.python.org/3/library/sys.html#sys.exit] on failure. This makes it callable from third party
software.

Patch by Mike Conley.

	Made the evolve functionality available through an
evolve() function in the management command, allowing the rest of the
command-specific logic to be skipped (such as console output and prompting).

Patch by Mike Conley.

Bug Fixes

	Fixed incorrect defaults on SQLite when adding null fields. (Bug #49)

On SQLite, adding a null field without a default value would cause the field
name to be the default. This was due to attempting to select the field name
from the temporary table, but since the table didn’t exist, the field name
itself was being used as the value.

We are now more explicit about the fields being selected and populated. We
have two lists, and no longer assume both are identical. We also use NULL
columns for temporary table fields unconditionally.

Patch by myself and Chris Beaven.

Contributors

	Chris Beaven

	Christian Hammond

	Mike Conley

Django Evolution 0.5

Release date: May 18, 2010

Initial public release.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 django_evolution	

 	
 	
 django_evolution.compat.apps	

 	
 	
 django_evolution.compat.commands	

 	
 	
 django_evolution.compat.datastructures	

 	
 	
 django_evolution.compat.db	

 	
 	
 django_evolution.compat.models	

 	
 	
 django_evolution.compat.picklers	

 	
 	
 django_evolution.compat.py23	

 	
 	
 django_evolution.conf	

 	
 	
 django_evolution.consts	

 	
 	
 django_evolution.db.common	

 	
 	
 django_evolution.db.mysql	

 	
 	
 django_evolution.db.postgresql	

 	
 	
 django_evolution.db.sql_result	

 	
 	
 django_evolution.db.sqlite3	

 	
 	
 django_evolution.db.state	

 	
 	
 django_evolution.deprecation	

 	
 	
 django_evolution.diff	

 	
 	
 django_evolution.errors	

 	
 	
 django_evolution.evolve	

 	
 	
 django_evolution.evolve.base	

 	
 	
 django_evolution.evolve.evolve_app_task	

 	
 	
 django_evolution.evolve.evolver	

 	
 	
 django_evolution.evolve.purge_app_task	

 	
 	
 django_evolution.mock_models	

 	
 	
 django_evolution.models	

 	
 	
 django_evolution.mutations	

 	
 	
 django_evolution.mutations.add_field	

 	
 	
 django_evolution.mutations.base	

 	
 	
 django_evolution.mutations.change_field	

 	
 	
 django_evolution.mutations.change_meta	

 	
 	
 django_evolution.mutations.delete_application	

 	
 	
 django_evolution.mutations.delete_field	

 	
 	
 django_evolution.mutations.delete_model	

 	
 	
 django_evolution.mutations.move_to_django_migrations	

 	
 	
 django_evolution.mutations.rename_app_label	

 	
 	
 django_evolution.mutations.rename_field	

 	
 	
 django_evolution.mutations.rename_model	

 	
 	
 django_evolution.mutations.sql_mutation	

 	
 	
 django_evolution.mutators	

 	
 	
 django_evolution.mutators.app_mutator	

 	
 	
 django_evolution.mutators.model_mutator	

 	
 	
 django_evolution.mutators.sql_mutator	

 	
 	
 django_evolution.placeholders	

 	
 	
 django_evolution.serialization	

 	
 	
 django_evolution.signals	

 	
 	
 django_evolution.signature	

 	
 	
 django_evolution.support	

 	
 	
 django_evolution.utils.apps	

 	
 	
 django_evolution.utils.datastructures	

 	
 	
 django_evolution.utils.evolutions	

 	
 	
 django_evolution.utils.graph	

 	
 	
 django_evolution.utils.migrations	

 	
 	
 django_evolution.utils.models	

 	
 	
 django_evolution.utils.sql	

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	
 ---delete

 	evolution-project-sig command line option

 	
 --all

 	mark-evolution-applied command line option

 	
 --app-label

 	mark-evolution-applied command line option

 	wipe-evolution command line option

 	
 --database

 	evolve command line option

 	
 --execute

 	evolve command line option

 	
 --hint

 	evolve command line option

 	
 --id

 	evolution-project-sig command line option

 	
 --list

 	evolution-project-sig command line option

 	
 --noinput

 	evolution-project-sig command line option

 	evolve command line option

 	mark-evolution-applied command line option

 	wipe-evolution command line option

 	
 	
 --purge

 	evolve command line option

 	
 --show

 	evolution-project-sig command line option

 	
 --sql

 	evolve command line option

 	
 --write

 	evolve command line option

 	
 -w

 	evolve command line option

 	
 -x

 	evolve command line option

 	
 <APP_LABEL...>

 	evolve command line option

 	list-evolutions command line option

_

 	
 	__add__() (django_evolution.utils.migrations.MigrationList method)

 	__bool__() (django_evolution.utils.migrations.MigrationList method)

 	__call__() (django_evolution.placeholders.BasePlaceholder method)

 	(django_evolution.placeholders.NullFieldInitialCallback method)

 	__delitem__() (django_evolution.compat.datastructures.OrderedDict method)

 	__enter__() (django_evolution.utils.sql.SQLExecutor method)

 	__eq__() (django_evolution.compat.datastructures.OrderedDict method)

 	(django_evolution.db.state.IndexState method)

 	(django_evolution.mock_models.MockModel method)

 	(django_evolution.mutations.base.BaseMutation method)

 	(django_evolution.signature.AppSignature method)

 	(django_evolution.signature.BaseSignature method)

 	(django_evolution.signature.ConstraintSignature method)

 	(django_evolution.signature.FieldSignature method)

 	(django_evolution.signature.IndexSignature method)

 	(django_evolution.signature.ModelSignature method)

 	(django_evolution.signature.ProjectSignature method)

 	(django_evolution.utils.migrations.MigrationList method)

 	__exit__() (django_evolution.utils.sql.SQLExecutor method)

 	__ge__() (django_evolution.compat.datastructures.OrderedDict method)

 	__get__() (django_evolution.compat.models.GenericForeignKey method)

 	__getattr__() (django_evolution.mock_models.MockMeta method)

 	__getattribute__() (django_evolution.compat.commands.BaseCommand method)

 	__gt__() (django_evolution.compat.datastructures.OrderedDict method)

 	__hash__ (django_evolution.compat.datastructures.OrderedDict attribute)

 	(django_evolution.signature.AppSignature attribute)

 	(django_evolution.signature.BaseSignature attribute)

 	(django_evolution.signature.FieldSignature attribute)

 	(django_evolution.signature.ModelSignature attribute)

 	(django_evolution.signature.ProjectSignature attribute)

 	(django_evolution.utils.migrations.MigrationList attribute)

 	__hash__() (django_evolution.db.state.IndexState method)

 	(django_evolution.mock_models.MockModel method)

 	(django_evolution.mutations.base.BaseMutation method)

 	(django_evolution.signature.ConstraintSignature method)

 	(django_evolution.signature.IndexSignature method)

 	(django_evolution.utils.graph.Node method)

 	__init__() (django_evolution.compat.commands.OptionParserWrapper method)

 	(django_evolution.compat.datastructures.OrderedDict method)

 	(django_evolution.compat.models.GenericForeignKey method)

 	(django_evolution.compat.models.GenericRelation method)

 	(django_evolution.conf.DjangoEvolutionSettings method)

 	(django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.sql_result.AlterTableSQLResult method)

 	(django_evolution.db.sql_result.SQLResult method)

 	(django_evolution.db.state.DatabaseState method)

 	(django_evolution.db.state.IndexState method)

 	(django_evolution.diff.Diff method)

 	(django_evolution.errors.EvolutionException method)

 	(django_evolution.errors.EvolutionExecutionError method)

 	(django_evolution.errors.InvalidSignatureVersion method)

 	(django_evolution.errors.MigrationConflictsError method)

 	(django_evolution.evolve.base.BaseEvolutionTask method)

 	(django_evolution.evolve.evolve_app_task.EvolveAppTask method)

 	(django_evolution.evolve.evolver.Evolver method)

 	(django_evolution.evolve.purge_app_task.PurgeAppTask method)

 	(django_evolution.mock_models.MockMeta method)

 	(django_evolution.mock_models.MockModel method)

 	(django_evolution.mock_models.MockRelated method)

 	(django_evolution.mutations.add_field.AddField method)

 	(django_evolution.mutations.base.BaseModelFieldMutation method)

 	(django_evolution.mutations.base.BaseModelMutation method)

 	(django_evolution.mutations.base.Simulation method)

 	(django_evolution.mutations.change_field.ChangeField method)

 	(django_evolution.mutations.change_meta.ChangeMeta method)

 	(django_evolution.mutations.move_to_django_migrations.MoveToDjangoMigrations method)

 	(django_evolution.mutations.rename_app_label.RenameAppLabel method)

 	(django_evolution.mutations.rename_field.RenameField method)

 	(django_evolution.mutations.rename_model.RenameModel method)

 	(django_evolution.mutations.sql_mutation.SQLMutation method)

 	(django_evolution.mutators.app_mutator.AppMutator method)

 	(django_evolution.mutators.model_mutator.ModelMutator method)

 	(django_evolution.mutators.sql_mutator.SQLMutator method)

 	(django_evolution.placeholders.BasePlaceholder method)

 	(django_evolution.signature.AppSignature method)

 	(django_evolution.signature.ConstraintSignature method)

 	(django_evolution.signature.FieldSignature method)

 	(django_evolution.signature.IndexSignature method)

 	(django_evolution.signature.ModelSignature method)

 	(django_evolution.signature.ProjectSignature method)

 	(django_evolution.utils.graph.DependencyGraph method)

 	(django_evolution.utils.graph.EvolutionGraph method)

 	(django_evolution.utils.graph.Node method)

 	(django_evolution.utils.graph.NodeNotFoundError method)

 	(django_evolution.utils.migrations.MigrationExecutor method)

 	(django_evolution.utils.migrations.MigrationList method)

 	(django_evolution.utils.migrations.MigrationLoader method)

 	(django_evolution.utils.sql.BaseGroupedSQL method)

 	(django_evolution.utils.sql.SQLExecutor method)

 	
 	__iter__() (django_evolution.compat.datastructures.OrderedDict method)

 	(django_evolution.utils.migrations.MigrationList method)

 	__le__() (django_evolution.compat.datastructures.OrderedDict method)

 	__len__() (django_evolution.utils.migrations.MigrationList method)

 	__lt__() (django_evolution.compat.datastructures.OrderedDict method)

 	__ne__() (django_evolution.compat.datastructures.OrderedDict method)

 	(django_evolution.signature.BaseSignature method)

 	__new__() (django_evolution.compat.picklers.SortedDict static method)

 	__reduce__() (django_evolution.compat.datastructures.OrderedDict method)

 	__repr__() (django_evolution.compat.datastructures.OrderedDict method)

 	(django_evolution.db.sql_result.AlterTableSQLResult method)

 	(django_evolution.db.sql_result.SQLResult method)

 	(django_evolution.db.state.IndexState method)

 	(django_evolution.evolve.base.BaseEvolutionTask method)

 	(django_evolution.mock_models.MockModel method)

 	(django_evolution.mutations.base.BaseMutation method)

 	(django_evolution.placeholders.BasePlaceholder method)

 	(django_evolution.signature.AppSignature method)

 	(django_evolution.signature.BaseSignature method)

 	(django_evolution.signature.ConstraintSignature method)

 	(django_evolution.signature.FieldSignature method)

 	(django_evolution.signature.IndexSignature method)

 	(django_evolution.signature.ModelSignature method)

 	(django_evolution.signature.ProjectSignature method)

 	(django_evolution.utils.graph.Node method)

 	(django_evolution.utils.migrations.MigrationList method)

 	__reversed__() (django_evolution.compat.datastructures.OrderedDict method)

 	__set__() (django_evolution.compat.models.GenericForeignKey method)

 	__setitem__() (django_evolution.compat.datastructures.OrderedDict method)

 	__sizeof__() (django_evolution.compat.datastructures.OrderedDict method)

 	__slotnames__ (django_evolution.models.VersionManager attribute)

 	__str__() (django_evolution.compat.models.GenericForeignKey method)

 	(django_evolution.diff.Diff method)

 	(django_evolution.errors.EvolutionException method)

 	(django_evolution.evolve.base.BaseEvolutionTask method)

 	(django_evolution.evolve.evolve_app_task.EvolveAppTask method)

 	(django_evolution.evolve.purge_app_task.PurgeAppTask method)

 	(django_evolution.models.Evolution method)

 	(django_evolution.models.Version method)

 	(django_evolution.mutations.base.BaseMutation method)

 	__sub__() (django_evolution.utils.migrations.MigrationList method)

A

 	
 	add() (django_evolution.db.sql_result.AlterTableSQLResult method)

 	(django_evolution.db.sql_result.SQLResult method)

 	add_alter_table() (django_evolution.db.sql_result.AlterTableSQLResult method)

 	add_app() (django_evolution.signature.ProjectSignature method)

 	add_app_sig() (django_evolution.signature.ProjectSignature method)

 	add_argument() (django_evolution.compat.commands.OptionParserWrapper method)

 	add_arguments() (django_evolution.compat.commands.BaseCommand method)

 	add_column() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	(django_evolution.mutations.add_field.AddField method)

 	(django_evolution.mutators.model_mutator.ModelMutator method)

 	add_constraint() (django_evolution.signature.ModelSignature method)

 	add_constraint_sig() (django_evolution.signature.ModelSignature method)

 	add_dependency() (django_evolution.utils.graph.DependencyGraph method)

 	add_evolutions() (django_evolution.utils.graph.EvolutionGraph method)

 	add_field() (django_evolution.signature.ModelSignature method)

 	add_field_sig() (django_evolution.signature.ModelSignature method)

 	add_index() (django_evolution.db.state.DatabaseState method)

 	(django_evolution.signature.ModelSignature method)

 	add_index_sig() (django_evolution.signature.ModelSignature method)

 	add_m2m_table() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.mutations.add_field.AddField method)

 	add_migration() (django_evolution.utils.migrations.MigrationList method)

 	add_migration_info() (django_evolution.utils.migrations.MigrationList method)

 	add_migration_plan() (django_evolution.utils.graph.EvolutionGraph method)

 	add_migration_targets() (django_evolution.utils.migrations.MigrationList method)

 	add_model() (django_evolution.signature.AppSignature method)

 	add_model_sig() (django_evolution.signature.AppSignature method)

 	add_node() (django_evolution.utils.graph.DependencyGraph method)

 	add_post_sql() (django_evolution.db.sql_result.SQLResult method)

 	add_pre_sql() (django_evolution.db.sql_result.SQLResult method)

 	
 	add_recorded_migration() (django_evolution.utils.migrations.MigrationList method)

 	add_sql() (django_evolution.db.sql_result.SQLResult method)

 	(django_evolution.mutators.app_mutator.AppMutator method)

 	(django_evolution.mutators.model_mutator.ModelMutator method)

 	add_table() (django_evolution.db.state.DatabaseState method)

 	AddField (built-in class)

 	(class in django_evolution.mutations.add_field)

 	alter_field_type_map (django_evolution.db.postgresql.EvolutionOperations attribute)

 	alter_table_sql_result_cls (django_evolution.db.common.BaseEvolutionOperations attribute)

 	(django_evolution.db.sqlite3.EvolutionOperations attribute)

 	AlterTableSQLResult (class in django_evolution.db.sql_result)

 	APP (django_evolution.consts.EvolutionsSource attribute)

 	app (django_evolution.evolve.evolve_app_task.EvolveAppTask attribute)

 	app_label (django_evolution.errors.EvolutionExecutionError attribute)

 	(django_evolution.evolve.evolve_app_task.EvolveAppTask attribute)

 	(django_evolution.evolve.purge_app_task.PurgeAppTask attribute)

 	(django_evolution.models.Evolution attribute)

 	app_sigs (django_evolution.signature.ProjectSignature property)

 	applied_evolution (in module django_evolution.signals)

 	applied_migration (in module django_evolution.signals)

 	applied_migrations (django_evolution.signature.AppSignature property)

 	(django_evolution.utils.migrations.MigrationLoader property)

 	apply_migrations() (in module django_evolution.utils.migrations)

 	apply_unique_together() (django_evolution.signature.ModelSignature method)

 	applying_evolution (in module django_evolution.signals)

 	applying_migration (in module django_evolution.signals)

 	AppMutator (class in django_evolution.mutators.app_mutator)

 	AppSignature (class in django_evolution.signature)

 	atomic() (in module django_evolution.compat.db)

 	auto_created (django_evolution.compat.models.GenericForeignKey attribute)

 	(django_evolution.compat.models.GenericRelation attribute)

B

 	
 	BaseCommand (class in django_evolution.compat.commands)

 	BaseEvolutionOperations (class in django_evolution.db.common)

 	BaseEvolutionTask (class in django_evolution.evolve.base)

 	BaseGroupedSQL (class in django_evolution.utils.sql)

 	BaseIterableSerialization (class in django_evolution.serialization)

 	BaseMigrationError

 	BaseModelFieldMutation (class in django_evolution.mutations.base)

 	BaseModelMutation (class in django_evolution.mutations.base)

 	BaseMutation (class in django_evolution.mutations.base)

 	
 	BasePlaceholder (class in django_evolution.placeholders)

 	BaseRemovedInDjangoEvolutionWarning

 	BaseSerialization (class in django_evolution.serialization)

 	BaseSignature (class in django_evolution.signature)

 	BaseUpgradeMethodMutation (class in django_evolution.mutations.base)

 	build_column_schema() (django_evolution.db.common.BaseEvolutionOperations method)

 	build_graph() (django_evolution.utils.migrations.MigrationLoader method)

 	BUILTIN (django_evolution.consts.EvolutionsSource attribute)

 	bulk_related_objects() (django_evolution.compat.models.GenericRelation method)

C

 	
 	can_add_index() (django_evolution.db.common.BaseEvolutionOperations method)

 	can_simulate (django_evolution.evolve.base.BaseEvolutionTask attribute)

 	can_simulate() (django_evolution.evolve.evolver.Evolver method)

 	CannotSimulate

 	change_column() (django_evolution.mutators.model_mutator.ModelMutator method)

 	change_column_attr_db_column() (django_evolution.db.common.BaseEvolutionOperations method)

 	change_column_attr_db_index() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	change_column_attr_db_table() (django_evolution.db.common.BaseEvolutionOperations method)

 	change_column_attr_decimal_type() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.postgresql.EvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	change_column_attr_max_length() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.mysql.EvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	change_column_attr_null() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	change_column_attr_unique() (django_evolution.db.common.BaseEvolutionOperations method)

 	change_column_attrs() (django_evolution.db.common.BaseEvolutionOperations method)

 	change_column_attrs_db_index_unique() (django_evolution.db.common.BaseEvolutionOperations method)

 	change_column_type() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	(django_evolution.mutators.model_mutator.ModelMutator method)

 	change_column_type_sets_attrs (django_evolution.db.common.BaseEvolutionOperations attribute)

 	(django_evolution.db.postgresql.EvolutionOperations attribute)

 	change_meta() (django_evolution.mutators.model_mutator.ModelMutator method)

 	change_meta_constraints() (django_evolution.db.common.BaseEvolutionOperations method)

 	change_meta_db_table_comment() (django_evolution.db.common.BaseEvolutionOperations method)

 	change_meta_index_together() (django_evolution.db.common.BaseEvolutionOperations method)

 	change_meta_indexes() (django_evolution.db.common.BaseEvolutionOperations method)

 	change_meta_unique_together() (django_evolution.db.common.BaseEvolutionOperations method)

 	ChangeField (built-in class)

 	(class in django_evolution.mutations.change_field)

 	ChangeMeta (built-in class)

 	(class in django_evolution.mutations.change_meta)

 	check() (django_evolution.compat.models.GenericForeignKey method)

 	(django_evolution.compat.models.GenericRelation method)

 	
 	child_separators (django_evolution.serialization.QSerialization attribute)

 	ClassSerialization (class in django_evolution.serialization)

 	clear() (django_evolution.compat.datastructures.OrderedDict method)

 	clear_app_cache() (in module django_evolution.compat.apps)

 	clear_global_custom_migrations() (in module django_evolution.utils.migrations)

 	clear_indexes() (django_evolution.db.state.DatabaseState method)

 	clear_model_rel_tree() (in module django_evolution.utils.models)

 	clear_model_sigs() (django_evolution.signature.AppSignature method)

 	clone() (django_evolution.db.state.DatabaseState method)

 	(django_evolution.signature.AppSignature method)

 	(django_evolution.signature.BaseSignature method)

 	(django_evolution.signature.ConstraintSignature method)

 	(django_evolution.signature.FieldSignature method)

 	(django_evolution.signature.IndexSignature method)

 	(django_evolution.signature.ModelSignature method)

 	(django_evolution.signature.ProjectSignature method)

 	(django_evolution.utils.migrations.MigrationList method)

 	CombinedExpressionSerialization (class in django_evolution.serialization)

 	concrete (django_evolution.compat.models.GenericForeignKey attribute)

 	connection (django_evolution.evolve.evolver.Evolver attribute)

 	ConstraintSignature (class in django_evolution.signature)

 	contribute_to_class() (django_evolution.compat.models.GenericForeignKey method)

 	(django_evolution.compat.models.GenericRelation method)

 	(django_evolution.models.SignatureField method)

 	copy() (django_evolution.compat.datastructures.OrderedDict method)

 	create_constraint_name() (in module django_evolution.compat.db)

 	create_field() (in module django_evolution.mock_models)

 	create_index() (django_evolution.db.common.BaseEvolutionOperations method)

 	create_index_name() (in module django_evolution.compat.db)

 	create_index_together_name() (in module django_evolution.compat.db)

 	create_model() (django_evolution.mutators.model_mutator.ModelMutator method)

 	create_parser() (django_evolution.compat.commands.BaseCommand method)

 	create_pre_migrate_state() (in module django_evolution.utils.migrations)

 	create_unique_index() (django_evolution.db.common.BaseEvolutionOperations method)

 	created_models (in module django_evolution.signals)

 	creating_models (in module django_evolution.signals)

 	current_version() (django_evolution.models.VersionManager method)

 	CUSTOM_EVOLUTIONS (django_evolution.conf.DjangoEvolutionSettings attribute)

D

 	
 	database_name (django_evolution.evolve.evolver.Evolver attribute)

 	database_state (django_evolution.evolve.evolver.Evolver attribute)

 	DatabaseState (class in django_evolution.db.state)

 	DatabaseStateError

 	db_get_installable_models_for_app() (in module django_evolution.compat.db)

 	db_router_allows_migrate() (in module django_evolution.compat.db)

 	db_router_allows_schema_upgrade() (in module django_evolution.compat.db)

 	db_router_allows_syncdb() (in module django_evolution.compat.db)

 	DeconstructedSerialization (class in django_evolution.serialization)

 	default_tablespace (django_evolution.db.common.BaseEvolutionOperations attribute)

 	(django_evolution.db.postgresql.EvolutionOperations attribute)

 	delete_column() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.mysql.EvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	(django_evolution.mutators.model_mutator.ModelMutator method)

 	delete_model() (django_evolution.mutators.model_mutator.ModelMutator method)

 	delete_table() (django_evolution.db.common.BaseEvolutionOperations method)

 	DeleteApplication (class in django_evolution.mutations.delete_application)

 	DeleteField (built-in class)

 	(class in django_evolution.mutations.delete_field)

 	DeleteModel (built-in class)

 	(class in django_evolution.mutations.delete_model)

 	dependencies (django_evolution.utils.graph.Node attribute)

 	DependencyGraph (class in django_evolution.utils.graph)

 	description (django_evolution.models.SignatureField attribute)

 	deserialize() (django_evolution.signature.AppSignature class method)

 	(django_evolution.signature.BaseSignature class method)

 	(django_evolution.signature.ConstraintSignature class method)

 	(django_evolution.signature.FieldSignature class method)

 	(django_evolution.signature.IndexSignature class method)

 	(django_evolution.signature.ModelSignature class method)

 	(django_evolution.signature.ProjectSignature class method)

 	deserialize_from_deconstructed() (django_evolution.serialization.BaseSerialization class method)

 	(django_evolution.serialization.QSerialization class method)

 	deserialize_from_signature() (django_evolution.serialization.BaseIterableSerialization class method)

 	(django_evolution.serialization.BaseSerialization class method)

 	(django_evolution.serialization.DeconstructedSerialization class method)

 	(django_evolution.serialization.DictSerialization class method)

 	(django_evolution.serialization.EnumSerialization class method)

 	(django_evolution.serialization.PrimitiveSerialization class method)

 	(in module django_evolution.serialization)

 	detailed_error (django_evolution.errors.EvolutionExecutionError attribute)

 	DictSerialization (class in django_evolution.serialization)

 	Diff (class in django_evolution.diff)

 	diff() (django_evolution.signature.AppSignature method)

 	(django_evolution.signature.BaseSignature method)

 	(django_evolution.signature.FieldSignature method)

 	(django_evolution.signature.ModelSignature method)

 	(django_evolution.signature.ProjectSignature method)

 	diff_evolutions() (django_evolution.evolve.evolver.Evolver method)

 	digest() (in module django_evolution.compat.db)

 	
 django_evolution

 	module

 	
 django_evolution.compat.apps

 	module

 	
 django_evolution.compat.commands

 	module

 	
 django_evolution.compat.datastructures

 	module

 	
 django_evolution.compat.db

 	module

 	
 django_evolution.compat.models

 	module

 	
 django_evolution.compat.picklers

 	module

 	
 django_evolution.compat.py23

 	module

 	
 django_evolution.conf

 	module

 	
 django_evolution.consts

 	module

 	
 django_evolution.db.common

 	module

 	
 django_evolution.db.mysql

 	module

 	
 django_evolution.db.postgresql

 	module

 	
 django_evolution.db.sql_result

 	module

 	
 django_evolution.db.sqlite3

 	module

 	
 django_evolution.db.state

 	module

 	
 	
 django_evolution.deprecation

 	module

 	
 django_evolution.diff

 	module

 	
 django_evolution.errors

 	module

 	
 django_evolution.evolve

 	module

 	
 django_evolution.evolve.base

 	module

 	
 django_evolution.evolve.evolve_app_task

 	module

 	
 django_evolution.evolve.evolver

 	module

 	
 django_evolution.evolve.purge_app_task

 	module

 	
 django_evolution.mock_models

 	module

 	
 django_evolution.models

 	module

 	
 django_evolution.mutations

 	module

 	
 django_evolution.mutations.add_field

 	module

 	
 django_evolution.mutations.base

 	module

 	
 django_evolution.mutations.change_field

 	module

 	
 django_evolution.mutations.change_meta

 	module

 	
 django_evolution.mutations.delete_application

 	module

 	
 django_evolution.mutations.delete_field

 	module

 	
 django_evolution.mutations.delete_model

 	module

 	
 django_evolution.mutations.move_to_django_migrations

 	module

 	
 django_evolution.mutations.rename_app_label

 	module

 	
 django_evolution.mutations.rename_field

 	module

 	
 django_evolution.mutations.rename_model

 	module

 	
 django_evolution.mutations.sql_mutation

 	module

 	
 django_evolution.mutators

 	module

 	
 django_evolution.mutators.app_mutator

 	module

 	
 django_evolution.mutators.model_mutator

 	module

 	
 django_evolution.mutators.sql_mutator

 	module

 	
 django_evolution.placeholders

 	module

 	
 django_evolution.serialization

 	module

 	
 django_evolution.signals

 	module

 	
 django_evolution.signature

 	module

 	
 django_evolution.support

 	module

 	
 django_evolution.utils.apps

 	module

 	
 django_evolution.utils.datastructures

 	module

 	
 django_evolution.utils.evolutions

 	module

 	
 django_evolution.utils.graph

 	module

 	
 django_evolution.utils.migrations

 	module

 	
 django_evolution.utils.models

 	module

 	
 django_evolution.utils.sql

 	module

 	DjangoCompatUnpickler (class in django_evolution.compat.picklers)

 	DjangoEvolutionSettings (class in django_evolution.conf)

 	DjangoEvolutionSupportError

 	drop_index() (django_evolution.db.common.BaseEvolutionOperations method)

 	drop_index_by_name() (django_evolution.db.common.BaseEvolutionOperations method)

E

 	
 	editable (django_evolution.compat.models.GenericForeignKey attribute)

 	emit_post_migrate_or_sync() (in module django_evolution.utils.migrations)

 	emit_pre_migrate_or_sync() (in module django_evolution.utils.migrations)

 	ENABLED (django_evolution.conf.DjangoEvolutionSettings attribute)

 	ensure_transaction() (django_evolution.utils.sql.SQLExecutor method)

 	EnumSerialization (class in django_evolution.serialization)

 	error_vars (django_evolution.mutations.base.BaseModelFieldMutation attribute)

 	(django_evolution.mutations.base.BaseModelMutation attribute)

 	(django_evolution.mutations.base.BaseMutation attribute)

 	(django_evolution.mutations.change_meta.ChangeMeta attribute)

 	Evolution (class in django_evolution.models)

 	evolution label

 	evolution() (django_evolution.diff.Diff method)

 	
 evolution-project-sig command line option

 	---delete

 	--id

 	--list

 	--noinput

 	--show

 	
 EVOLUTION_LABEL

 	mark-evolution-applied command line option

 	wipe-evolution command line option

 	evolution_required (django_evolution.evolve.base.BaseEvolutionTask attribute)

 	EvolutionBaselineMissingError

 	EvolutionException

 	EvolutionExecutionError

 	EvolutionGraph (class in django_evolution.utils.graph)

 	EvolutionNotImplementedError

 	EvolutionOperations (class in django_evolution.db.mysql)

 	(class in django_evolution.db.postgresql)

 	(class in django_evolution.db.sqlite3)

 	
 	EVOLUTIONS (django_evolution.consts.UpgradeMethod attribute)

 	evolutions (django_evolution.models.Version attribute)

 	EvolutionsSource (class in django_evolution.consts)

 	EvolutionTaskAlreadyQueuedError

 	
 evolve command line option

 	--database

 	--execute

 	--hint

 	--noinput

 	--purge

 	--sql

 	--write

 	-w

 	-x

 	<APP_LABEL...>

 	evolve() (django_evolution.evolve.evolver.Evolver method)

 	EvolveAppTask (class in django_evolution.evolve.evolve_app_task)

 	evolved (django_evolution.evolve.evolver.Evolver attribute)

 	(in module django_evolution.signals)

 	Evolver (class in django_evolution.evolve.evolver)

 	evolver (django_evolution.evolve.base.BaseEvolutionTask attribute)

 	evolver() (django_evolution.mutations.base.BaseModelMutation method)

 	evolving (in module django_evolution.signals)

 	evolving_failed (in module django_evolution.signals)

 	execute() (django_evolution.evolve.base.BaseEvolutionTask method)

 	(django_evolution.evolve.evolve_app_task.EvolveAppTask method)

 	(django_evolution.evolve.purge_app_task.PurgeAppTask method)

 	execute_tasks() (django_evolution.evolve.base.BaseEvolutionTask class method)

 	(django_evolution.evolve.evolve_app_task.EvolveAppTask class method)

 	extra_applied_migrations (django_evolution.utils.migrations.MigrationLoader attribute)

F

 	
 	fail() (django_evolution.mutations.base.Simulation method)

 	field_sigs (django_evolution.signature.ModelSignature property)

 	FieldDoesNotExist

 	fields (django_evolution.mock_models.MockMeta property)

 	FieldSignature (class in django_evolution.signature)

 	filter_dup_list_items() (in module django_evolution.utils.datastructures)

 	filter_migration_targets() (in module django_evolution.utils.migrations)

 	finalize() (django_evolution.utils.graph.DependencyGraph method)

 	finalize_migrations() (in module django_evolution.utils.migrations)

 	find_class() (django_evolution.compat.picklers.DjangoCompatUnpickler method)

 	find_index() (django_evolution.db.state.DatabaseState method)

 	finish_op() (django_evolution.mutators.model_mutator.ModelMutator method)

 	
 	finish_transaction() (django_evolution.utils.sql.SQLExecutor method)

 	from_app() (django_evolution.signature.AppSignature class method)

 	from_app_sig() (django_evolution.utils.migrations.MigrationList class method)

 	from_constraint() (django_evolution.signature.ConstraintSignature class method)

 	from_database() (django_evolution.signature.ProjectSignature class method)

 	(django_evolution.utils.migrations.MigrationList class method)

 	from_evolver() (django_evolution.mutators.app_mutator.AppMutator class method)

 	from_field() (django_evolution.signature.FieldSignature class method)

 	from_index() (django_evolution.signature.IndexSignature class method)

 	from_model() (django_evolution.signature.ModelSignature class method)

 	from_names() (django_evolution.utils.migrations.MigrationList class method)

 	fromkeys() (django_evolution.compat.datastructures.OrderedDict method)

G

 	
 	generate_dependencies() (django_evolution.mutations.base.BaseMutation method)

 	(django_evolution.mutations.base.BaseUpgradeMethodMutation method)

 	(django_evolution.mutations.move_to_django_migrations.MoveToDjangoMigrations method)

 	generate_hint() (django_evolution.mutations.base.BaseMutation method)

 	generate_mutations_info() (django_evolution.evolve.evolve_app_task.EvolveAppTask method)

 	generate_table_op_sql() (django_evolution.db.common.BaseEvolutionOperations method)

 	generate_table_ops_sql() (django_evolution.db.common.BaseEvolutionOperations method)

 	GenericForeignKey (class in django_evolution.compat.models)

 	GenericRelation (class in django_evolution.compat.models)

 	get_app() (in module django_evolution.compat.apps)

 	get_app_config_for_app() (in module django_evolution.utils.apps)

 	get_app_label() (in module django_evolution.utils.apps)

 	get_app_labels() (django_evolution.utils.migrations.MigrationList method)

 	get_app_mutations() (in module django_evolution.utils.evolutions)

 	get_app_name() (in module django_evolution.utils.apps)

 	get_app_pending_mutations() (in module django_evolution.utils.evolutions)

 	get_app_sig() (django_evolution.mutations.base.Simulation method)

 	(django_evolution.signature.ProjectSignature method)

 	get_app_upgrade_info() (in module django_evolution.utils.evolutions)

 	get_applied_evolutions() (in module django_evolution.utils.evolutions)

 	get_apps() (in module django_evolution.compat.apps)

 	get_attr_default() (django_evolution.signature.FieldSignature method)

 	get_attr_value() (django_evolution.signature.FieldSignature method)

 	get_cache_name() (django_evolution.compat.models.GenericForeignKey method)

 	get_change_column_type_sql() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.mysql.EvolutionOperations method)

 	(django_evolution.db.postgresql.EvolutionOperations method)

 	get_change_unique_sql() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.mysql.EvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	get_column_names_for_fields() (django_evolution.db.common.BaseEvolutionOperations method)

 	get_constraints_for_table() (django_evolution.db.common.BaseEvolutionOperations method)

 	get_content_type() (django_evolution.compat.models.GenericForeignKey method)

 	(django_evolution.compat.models.GenericRelation method)

 	get_database_for_model_name() (in module django_evolution.utils.models)

 	get_db_prep_value() (django_evolution.models.SignatureField method)

 	get_default_index_name() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.mysql.EvolutionOperations method)

 	(django_evolution.db.postgresql.EvolutionOperations method)

 	get_default_index_together_name() (django_evolution.db.common.BaseEvolutionOperations method)

 	get_deferrable_sql() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	get_drop_index_sql() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.mysql.EvolutionOperations method)

 	get_drop_unique_constraint_sql() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.postgresql.EvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	get_evolution_app_dependencies() (in module django_evolution.utils.evolutions)

 	get_evolution_content() (django_evolution.evolve.base.BaseEvolutionTask method)

 	(django_evolution.evolve.evolve_app_task.EvolveAppTask method)

 	get_evolution_dependencies() (in module django_evolution.utils.evolutions)

 	get_evolution_module() (in module django_evolution.utils.evolutions)

 	get_evolution_required() (django_evolution.evolve.evolver.Evolver method)

 	get_evolution_sequence() (in module django_evolution.utils.evolutions)

 	get_evolutions_module() (in module django_evolution.utils.evolutions)

 	get_evolutions_module_name() (in module django_evolution.utils.evolutions)

 	get_evolutions_path() (in module django_evolution.utils.evolutions)

 	get_evolutions_source() (in module django_evolution.utils.evolutions)

 	
 	get_evolver() (django_evolution.mutations.base.Simulation method)

 	get_extra_restriction() (django_evolution.compat.models.GenericRelation method)

 	get_field() (django_evolution.mock_models.MockMeta method)

 	get_field_by_name() (django_evolution.mock_models.MockMeta method)

 	get_field_is_hidden() (in module django_evolution.compat.models)

 	get_field_is_many_to_many() (in module django_evolution.compat.models)

 	get_field_is_relation() (in module django_evolution.compat.models)

 	get_field_sig() (django_evolution.mutations.base.Simulation method)

 	(django_evolution.signature.ModelSignature method)

 	get_field_type_allows_default() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.mysql.EvolutionOperations method)

 	get_fields_for_names() (django_evolution.db.common.BaseEvolutionOperations method)

 	get_filter_kwargs_for_object() (django_evolution.compat.models.GenericForeignKey method)

 	get_forward_related_filter() (django_evolution.compat.models.GenericForeignKey method)

 	get_hint_params() (django_evolution.mutations.add_field.AddField method)

 	(django_evolution.mutations.base.BaseMutation method)

 	(django_evolution.mutations.change_field.ChangeField method)

 	(django_evolution.mutations.change_meta.ChangeMeta method)

 	(django_evolution.mutations.delete_field.DeleteField method)

 	(django_evolution.mutations.delete_model.DeleteModel method)

 	(django_evolution.mutations.rename_app_label.RenameAppLabel method)

 	(django_evolution.mutations.rename_field.RenameField method)

 	(django_evolution.mutations.rename_model.RenameModel method)

 	(django_evolution.mutations.sql_mutation.SQLMutation method)

 	get_index() (django_evolution.db.state.DatabaseState method)

 	get_indexes_for_table() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.mysql.EvolutionOperations method)

 	(django_evolution.db.postgresql.EvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	get_internal_type() (django_evolution.compat.models.GenericRelation method)

 	get_leaf_nodes() (django_evolution.utils.graph.DependencyGraph method)

 	get_legacy_app_label() (in module django_evolution.utils.apps)

 	get_model() (in module django_evolution.compat.models)

 	get_model_name() (in module django_evolution.compat.models)

 	get_model_rel_tree() (in module django_evolution.utils.models)

 	get_model_sig() (django_evolution.mutations.base.Simulation method)

 	(django_evolution.signature.AppSignature method)

 	get_models() (in module django_evolution.compat.models)

 	get_new_constraint_name() (django_evolution.db.common.BaseEvolutionOperations method)

 	get_new_index_name() (django_evolution.db.common.BaseEvolutionOperations method)

 	get_next_by_when() (django_evolution.models.Version method)

 	get_node() (django_evolution.utils.graph.DependencyGraph method)

 	get_ordered() (django_evolution.utils.graph.DependencyGraph method)

 	get_package_version() (in module django_evolution)

 	get_path_info() (django_evolution.compat.models.GenericRelation method)

 	get_prefetch_queryset() (django_evolution.compat.models.GenericForeignKey method)

 	get_prep_value() (django_evolution.models.SignatureField method)

 	get_previous_by_when() (django_evolution.models.Version method)

 	get_rel_target_field() (in module django_evolution.compat.models)

 	get_remote_field() (in module django_evolution.compat.models)

 	get_remote_field_model() (in module django_evolution.compat.models)

 	get_remote_field_related_model() (in module django_evolution.compat.models)

 	get_rename_table_sql() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.mysql.EvolutionOperations method)

 	get_reverse_path_info() (django_evolution.compat.models.GenericRelation method)

 	get_unapplied_evolutions() (in module django_evolution.utils.evolutions)

 	get_update_table_constraints_sql() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	get_version_string() (in module django_evolution)

H

 	
 	has_evolutions_module() (in module django_evolution.utils.evolutions)

 	has_migration_info() (django_evolution.utils.migrations.MigrationList method)

 	has_migrations_module() (in module django_evolution.utils.migrations)

 	has_model() (django_evolution.db.state.DatabaseState method)

 	
 	has_table() (django_evolution.db.state.DatabaseState method)

 	has_unique_together_changed() (django_evolution.signature.ModelSignature method)

 	hidden (django_evolution.compat.models.GenericForeignKey attribute)

 	hinted (django_evolution.evolve.evolver.Evolver attribute)

I

 	
 	id (django_evolution.evolve.base.BaseEvolutionTask attribute)

 	(django_evolution.models.Evolution attribute)

 	(django_evolution.models.Version attribute)

 	ignored_m2m_attrs (django_evolution.db.common.BaseEvolutionOperations attribute)

 	import_management_modules() (in module django_evolution.utils.apps)

 	index_together (django_evolution.signature.ModelSignature property)

 	IndexSignature (class in django_evolution.signature)

 	IndexState (class in django_evolution.db.state)

 	initial_diff (django_evolution.evolve.evolver.Evolver attribute)

 	insert_index (django_evolution.utils.graph.Node attribute)

 	interactive (django_evolution.evolve.evolver.Evolver attribute)

 	InvalidSignatureVersion

 	is_attr_value_default() (django_evolution.signature.FieldSignature method)

 	is_column_referenced() (django_evolution.db.sqlite3.EvolutionOperations method)

 	is_empty() (django_evolution.diff.Diff method)

 	(django_evolution.signature.AppSignature method)

 	is_hinted() (django_evolution.models.Version method)

 	is_migration_initial() (in module django_evolution.utils.migrations)

 	
 	is_mutable() (django_evolution.mutations.base.BaseModelMutation method)

 	(django_evolution.mutations.base.BaseMutation method)

 	(django_evolution.mutations.base.BaseUpgradeMethodMutation method)

 	(django_evolution.mutations.delete_application.DeleteApplication method)

 	(django_evolution.mutations.rename_app_label.RenameAppLabel method)

 	(django_evolution.mutations.sql_mutation.SQLMutation method)

 	is_mutation_mutable() (django_evolution.evolve.base.BaseEvolutionTask method)

 	is_relation (django_evolution.compat.models.GenericForeignKey attribute)

 	is_release() (in module django_evolution)

 	item_type (django_evolution.serialization.BaseIterableSerialization attribute)

 	(django_evolution.serialization.ListSerialization attribute)

 	(django_evolution.serialization.SetSerialization attribute)

 	(django_evolution.serialization.TupleSerialization attribute)

 	items() (django_evolution.compat.datastructures.OrderedDict method)

 	iter_batches() (django_evolution.utils.graph.EvolutionGraph method)

 	iter_evolution_content() (django_evolution.evolve.evolver.Evolver method)

 	iter_indexes() (django_evolution.db.state.DatabaseState method)

 	iter_model_fields() (in module django_evolution.utils.models)

 	iter_non_m2m_reverse_relations() (in module django_evolution.utils.models)

K

 	
 	key (django_evolution.utils.graph.Node attribute)

 	
 	keys() (django_evolution.compat.datastructures.OrderedDict method)

L

 	
 	label (django_evolution.mock_models.MockMeta property)

 	(django_evolution.models.Evolution attribute)

 	last_sql_statement (django_evolution.errors.EvolutionExecutionError attribute)

 	LATEST_SIGNATURE_VERSION (in module django_evolution.signature)

 	legacy app label

 	legacy app labels

 	
 	
 list-evolutions command line option

 	<APP_LABEL...>

 	ListSerialization (class in django_evolution.serialization)

 	load_disk() (django_evolution.utils.migrations.MigrationLoader method)

 	load_settings() (django_evolution.conf.DjangoEvolutionSettings method)

 	local_fields (django_evolution.mock_models.MockMeta property)

 	local_many_to_many (django_evolution.mock_models.MockMeta property)

M

 	
 	many_to_many (django_evolution.compat.models.GenericForeignKey attribute)

 	(django_evolution.compat.models.GenericRelation attribute)

 	many_to_one (django_evolution.compat.models.GenericForeignKey attribute)

 	(django_evolution.compat.models.GenericRelation attribute)

 	
 mark-evolution-applied command line option

 	--all

 	--app-label

 	--noinput

 	EVOLUTION_LABEL

 	mark_evolutions_applied() (django_evolution.utils.graph.EvolutionGraph method)

 	mark_migrations_applied() (django_evolution.utils.graph.EvolutionGraph method)

 	merge_dicts() (in module django_evolution.utils.datastructures)

 	mergeable_ops (django_evolution.db.common.BaseEvolutionOperations attribute)

 	MigrationConflictsError

 	MigrationExecutor (class in django_evolution.utils.migrations)

 	MigrationHistoryError

 	MigrationList (class in django_evolution.utils.migrations)

 	MigrationLoader (class in django_evolution.utils.migrations)

 	migrations

 	MIGRATIONS (django_evolution.consts.UpgradeMethod attribute)

 	MissingSignatureError

 	MockMeta (class in django_evolution.mock_models)

 	MockModel (class in django_evolution.mock_models)

 	MockRelated (class in django_evolution.mock_models)

 	model_sig (django_evolution.mutators.model_mutator.ModelMutator property)

 	model_sigs (django_evolution.signature.AppSignature property)

 	ModelMutator (class in django_evolution.mutators.model_mutator)

 	ModelSignature (class in django_evolution.signature)

 	modern app label

 	modern app labels

 	
 module

 	django_evolution

 	django_evolution.compat.apps

 	django_evolution.compat.commands

 	django_evolution.compat.datastructures

 	django_evolution.compat.db

 	django_evolution.compat.models

 	django_evolution.compat.picklers

 	django_evolution.compat.py23

 	django_evolution.conf

 	django_evolution.consts

 	django_evolution.db.common

 	django_evolution.db.mysql

 	django_evolution.db.postgresql

 	django_evolution.db.sql_result

 	django_evolution.db.sqlite3

 	django_evolution.db.state

 	django_evolution.deprecation

 	django_evolution.diff

 	django_evolution.errors

 	django_evolution.evolve

 	django_evolution.evolve.base

 	django_evolution.evolve.evolve_app_task

 	django_evolution.evolve.evolver

 	django_evolution.evolve.purge_app_task

 	django_evolution.mock_models

 	django_evolution.models

 	django_evolution.mutations

 	django_evolution.mutations.add_field

 	django_evolution.mutations.base

 	django_evolution.mutations.change_field

 	django_evolution.mutations.change_meta

 	django_evolution.mutations.delete_application

 	django_evolution.mutations.delete_field

 	django_evolution.mutations.delete_model

 	django_evolution.mutations.move_to_django_migrations

 	django_evolution.mutations.rename_app_label

 	django_evolution.mutations.rename_field

 	django_evolution.mutations.rename_model

 	django_evolution.mutations.sql_mutation

 	django_evolution.mutators

 	django_evolution.mutators.app_mutator

 	django_evolution.mutators.model_mutator

 	django_evolution.mutators.sql_mutator

 	django_evolution.placeholders

 	django_evolution.serialization

 	django_evolution.signals

 	django_evolution.signature

 	django_evolution.support

 	django_evolution.utils.apps

 	django_evolution.utils.datastructures

 	django_evolution.utils.evolutions

 	django_evolution.utils.graph

 	django_evolution.utils.migrations

 	django_evolution.utils.models

 	django_evolution.utils.sql

 	
 	move_to_end() (django_evolution.compat.datastructures.OrderedDict method)

 	MoveToDjangoMigrations (built-in class)

 	(class in django_evolution.mutations.move_to_django_migrations)

 	mti_inherited (django_evolution.compat.models.GenericRelation attribute)

 	mutate() (django_evolution.mutations.add_field.AddField method)

 	(django_evolution.mutations.base.BaseModelMutation method)

 	(django_evolution.mutations.base.BaseMutation method)

 	(django_evolution.mutations.base.BaseUpgradeMethodMutation method)

 	(django_evolution.mutations.change_field.ChangeField method)

 	(django_evolution.mutations.change_meta.ChangeMeta method)

 	(django_evolution.mutations.delete_application.DeleteApplication method)

 	(django_evolution.mutations.delete_field.DeleteField method)

 	(django_evolution.mutations.delete_model.DeleteModel method)

 	(django_evolution.mutations.rename_app_label.RenameAppLabel method)

 	(django_evolution.mutations.rename_field.RenameField method)

 	(django_evolution.mutations.rename_model.RenameModel method)

 	(django_evolution.mutations.sql_mutation.SQLMutation method)

N

 	
 	name (django_evolution.db.common.BaseEvolutionOperations attribute)

 	(django_evolution.db.mysql.EvolutionOperations attribute)

 	(django_evolution.db.postgresql.EvolutionOperations attribute)

 	(django_evolution.db.sqlite3.EvolutionOperations attribute)

 	new_evolutions (django_evolution.evolve.base.BaseEvolutionTask attribute)

 	new_transaction() (django_evolution.utils.sql.SQLExecutor method)

 	NewTransactionSQL (class in django_evolution.utils.sql)

 	Node (class in django_evolution.utils.graph)

 	NODE_TYPE_ANCHOR (django_evolution.utils.graph.EvolutionGraph attribute)

 	NODE_TYPE_CREATE_MODEL (django_evolution.utils.graph.EvolutionGraph attribute)

 	
 	NODE_TYPE_EVOLUTION (django_evolution.utils.graph.EvolutionGraph attribute)

 	NODE_TYPE_MIGRATION (django_evolution.utils.graph.EvolutionGraph attribute)

 	NodeNotFoundError

 	normalize_bool() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.postgresql.EvolutionOperations method)

 	normalize_initial() (django_evolution.db.common.BaseEvolutionOperations method)

 	normalize_sql() (django_evolution.db.sql_result.SQLResult method)

 	normalize_value() (django_evolution.db.common.BaseEvolutionOperations method)

 	NoTransactionSQL (class in django_evolution.utils.sql)

 	NullFieldInitialCallback (class in django_evolution.placeholders)

O

 	
 	objects (django_evolution.models.Evolution attribute)

 	(django_evolution.models.Version attribute)

 	one_to_many (django_evolution.compat.models.GenericForeignKey attribute)

 	(django_evolution.compat.models.GenericRelation attribute)

 	
 	one_to_one (django_evolution.compat.models.GenericForeignKey attribute)

 	(django_evolution.compat.models.GenericRelation attribute)

 	OptionParserWrapper (class in django_evolution.compat.commands)

 	OrderedDict (class in django_evolution.compat.datastructures)

P

 	
 	pickle_dumps() (in module django_evolution.compat.py23)

 	pickle_loads() (in module django_evolution.compat.py23)

 	placeholder_text (django_evolution.placeholders.BasePlaceholder attribute)

 	(django_evolution.placeholders.NullFieldInitialCallback attribute)

 	PlaceholderSerialization (class in django_evolution.serialization)

 	pop() (django_evolution.compat.datastructures.OrderedDict method)

 	popitem() (django_evolution.compat.datastructures.OrderedDict method)

 	prepare() (django_evolution.evolve.base.BaseEvolutionTask method)

 	(django_evolution.evolve.evolve_app_task.EvolveAppTask method)

 	(django_evolution.evolve.purge_app_task.PurgeAppTask method)

 	
 	prepare_tasks() (django_evolution.evolve.base.BaseEvolutionTask class method)

 	(django_evolution.evolve.evolve_app_task.EvolveAppTask class method)

 	PrimitiveSerialization (class in django_evolution.serialization)

 	PROJECT (django_evolution.consts.EvolutionsSource attribute)

 	project signature

 	project signatures

 	project_sig (django_evolution.evolve.evolver.Evolver attribute)

 	ProjectSignature (class in django_evolution.signature)

 	PurgeAppTask (class in django_evolution.evolve.purge_app_task)

Q

 	
 	QSerialization (class in django_evolution.serialization)

 	queue_evolve_all_apps() (django_evolution.evolve.evolver.Evolver method)

 	queue_evolve_app() (django_evolution.evolve.evolver.Evolver method)

 	queue_purge_app() (django_evolution.evolve.evolver.Evolver method)

 	
 	queue_purge_old_apps() (django_evolution.evolve.evolver.Evolver method)

 	queue_task() (django_evolution.evolve.evolver.Evolver method)

 	QueueEvolverTaskError

 	quote_sql_param() (django_evolution.db.common.BaseEvolutionOperations method)

R

 	
 	record_applied_migrations() (in module django_evolution.utils.migrations)

 	register_global_custom_migrations() (in module django_evolution.utils.migrations)

 	rel_class (django_evolution.compat.models.GenericRelation attribute)

 	related_model (django_evolution.compat.models.GenericForeignKey attribute)

 	remote_field (django_evolution.compat.models.GenericForeignKey attribute)

 	remove_app_sig() (django_evolution.signature.ProjectSignature method)

 	remove_dependencies() (django_evolution.utils.graph.DependencyGraph method)

 	remove_field_sig() (django_evolution.signature.ModelSignature method)

 	remove_index() (django_evolution.db.state.DatabaseState method)

 	remove_model_sig() (django_evolution.signature.AppSignature method)

 	RemovedInDjangoEvolution30Warning

 	RemovedInDjangoEvolution40Warning

 	RemovedInNextDjangoEvolutionWarning (in module django_evolution.deprecation)

 	rename_column() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.mysql.EvolutionOperations method)

 	(django_evolution.db.postgresql.EvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	rename_table() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.sqlite3.EvolutionOperations method)

 	
 	RenameAppLabel (built-in class)

 	(class in django_evolution.mutations.rename_app_label)

 	RenameField (built-in class)

 	(class in django_evolution.mutations.rename_field)

 	RenameModel (built-in class)

 	(class in django_evolution.mutations.rename_model)

 	replace_settings() (django_evolution.conf.DjangoEvolutionSettings method)

 	required_by (django_evolution.utils.graph.Node attribute)

 	rescan_tables() (django_evolution.db.state.DatabaseState method)

 	resolve_related_fields() (django_evolution.compat.models.GenericRelation method)

 	restore_field_ref_constraints() (django_evolution.db.common.BaseEvolutionOperations method)

 	run_checks() (django_evolution.utils.migrations.MigrationExecutor method)

 	run_mutation() (django_evolution.mutators.app_mutator.AppMutator method)

 	(django_evolution.mutators.model_mutator.ModelMutator method)

 	run_mutations() (django_evolution.mutators.app_mutator.AppMutator method)

 	run_simulation() (django_evolution.mutations.base.BaseMutation method)

 	run_sql() (django_evolution.utils.sql.SQLExecutor method)

S

 	
 	serialize() (django_evolution.signature.AppSignature method)

 	(django_evolution.signature.BaseSignature method)

 	(django_evolution.signature.ConstraintSignature method)

 	(django_evolution.signature.FieldSignature method)

 	(django_evolution.signature.IndexSignature method)

 	(django_evolution.signature.ModelSignature method)

 	(django_evolution.signature.ProjectSignature method)

 	serialize_attr() (django_evolution.mutations.base.BaseMutation method)

 	serialize_to_python() (django_evolution.serialization.BaseSerialization class method)

 	(django_evolution.serialization.ClassSerialization class method)

 	(django_evolution.serialization.CombinedExpressionSerialization class method)

 	(django_evolution.serialization.DeconstructedSerialization class method)

 	(django_evolution.serialization.DictSerialization class method)

 	(django_evolution.serialization.EnumSerialization class method)

 	(django_evolution.serialization.ListSerialization class method)

 	(django_evolution.serialization.PlaceholderSerialization class method)

 	(django_evolution.serialization.PrimitiveSerialization class method)

 	(django_evolution.serialization.QSerialization class method)

 	(django_evolution.serialization.SetSerialization class method)

 	(django_evolution.serialization.StringSerialization class method)

 	(django_evolution.serialization.TupleSerialization class method)

 	(in module django_evolution.serialization)

 	serialize_to_signature() (django_evolution.serialization.BaseIterableSerialization class method)

 	(django_evolution.serialization.BaseSerialization class method)

 	(django_evolution.serialization.DeconstructedSerialization class method)

 	(django_evolution.serialization.DictSerialization class method)

 	(django_evolution.serialization.EnumSerialization class method)

 	(django_evolution.serialization.PrimitiveSerialization class method)

 	(django_evolution.serialization.QSerialization class method)

 	(django_evolution.serialization.StringSerialization class method)

 	(in module django_evolution.serialization)

 	serialize_value() (django_evolution.mutations.base.BaseMutation method)

 	set_attributes_from_rel() (django_evolution.compat.models.GenericRelation method)

 	set_field_null() (django_evolution.db.common.BaseEvolutionOperations method)

 	(django_evolution.db.mysql.EvolutionOperations method)

 	set_model_name() (in module django_evolution.compat.models)

 	setdefault() (django_evolution.compat.datastructures.OrderedDict method)

 	SetSerialization (class in django_evolution.serialization)

 	setup_fields() (django_evolution.mock_models.MockMeta method)

 	signature (django_evolution.models.Version attribute)

 	SignatureField (class in django_evolution.models)

 	simulate() (django_evolution.mutations.add_field.AddField method)

 	(django_evolution.mutations.base.BaseMutation method)

 	(django_evolution.mutations.change_field.ChangeField method)

 	(django_evolution.mutations.change_meta.ChangeMeta method)

 	(django_evolution.mutations.delete_application.DeleteApplication method)

 	(django_evolution.mutations.delete_field.DeleteField method)

 	(django_evolution.mutations.delete_model.DeleteModel method)

 	(django_evolution.mutations.move_to_django_migrations.MoveToDjangoMigrations method)

 	(django_evolution.mutations.rename_app_label.RenameAppLabel method)

 	(django_evolution.mutations.rename_field.RenameField method)

 	(django_evolution.mutations.rename_model.RenameModel method)

 	(django_evolution.mutations.sql_mutation.SQLMutation method)

 	
 	Simulation (class in django_evolution.mutations.base)

 	simulation_failure_error (django_evolution.mutations.add_field.AddField attribute)

 	(django_evolution.mutations.base.BaseMutation attribute)

 	(django_evolution.mutations.change_field.ChangeField attribute)

 	(django_evolution.mutations.change_meta.ChangeMeta attribute)

 	(django_evolution.mutations.delete_application.DeleteApplication attribute)

 	(django_evolution.mutations.delete_field.DeleteField attribute)

 	(django_evolution.mutations.delete_model.DeleteModel attribute)

 	(django_evolution.mutations.rename_field.RenameField attribute)

 	(django_evolution.mutations.rename_model.RenameModel attribute)

 	SimulationFailure

 	SortedDict (class in django_evolution.compat.picklers)

 	sql (django_evolution.evolve.base.BaseEvolutionTask attribute)

 	(django_evolution.utils.sql.BaseGroupedSQL attribute)

 	sql_add_constraints() (in module django_evolution.compat.db)

 	sql_create_app() (in module django_evolution.compat.db)

 	sql_create_for_many_to_many_field() (in module django_evolution.compat.db)

 	sql_create_models() (in module django_evolution.compat.db)

 	sql_delete() (in module django_evolution.compat.db)

 	sql_delete_constraints() (in module django_evolution.compat.db)

 	sql_delete_index() (in module django_evolution.compat.db)

 	sql_executor() (django_evolution.evolve.evolver.Evolver method)

 	sql_indexes_for_field() (in module django_evolution.compat.db)

 	sql_indexes_for_fields() (in module django_evolution.compat.db)

 	sql_indexes_for_model() (in module django_evolution.compat.db)

 	SQLExecutor (class in django_evolution.utils.sql)

 	SQLiteAlterTableSQLResult (class in django_evolution.db.sqlite3)

 	SQLMutation (built-in class)

 	(class in django_evolution.mutations.sql_mutation)

 	SQLMutator (class in django_evolution.mutators.sql_mutator)

 	SQLResult (class in django_evolution.db.sql_result)

 	stash_field_ref_constraints() (django_evolution.db.common.BaseEvolutionOperations method)

 	state (django_evolution.utils.graph.Node attribute)

 	StringSerialization (class in django_evolution.serialization)

 	supported_change_attrs (django_evolution.db.common.BaseEvolutionOperations attribute)

 	supported_change_meta (django_evolution.db.common.BaseEvolutionOperations attribute)

 	(django_evolution.db.sqlite3.EvolutionOperations attribute)

 	supports_constraints (in module django_evolution.support)

 	supports_db_table_comments (in module django_evolution.support)

 	supports_f_comparison (in module django_evolution.support)

 	supports_index_feature() (in module django_evolution.support)

 	supports_index_together (in module django_evolution.support)

 	supports_indexes (in module django_evolution.support)

 	supports_migrations (in module django_evolution.support)

 	supports_q_comparison (in module django_evolution.support)

T

 	
 	tasks (django_evolution.evolve.evolver.Evolver property)

 	to_python() (django_evolution.models.SignatureField method)

 	to_sql() (django_evolution.db.sql_result.AlterTableSQLResult method)

 	(django_evolution.db.sql_result.SQLResult method)

 	(django_evolution.db.sqlite3.SQLiteAlterTableSQLResult method)

 	(django_evolution.mutators.app_mutator.AppMutator method)

 	(django_evolution.mutators.model_mutator.ModelMutator method)

 	(django_evolution.mutators.sql_mutator.SQLMutator method)

 	
 	to_targets() (django_evolution.utils.migrations.MigrationList method)

 	transaction() (django_evolution.evolve.evolver.Evolver method)

 	truncate_name() (in module django_evolution.compat.db)

 	TupleSerialization (class in django_evolution.serialization)

U

 	
 	unique_together (django_evolution.signature.ModelSignature property)

 	unrecord_applied_migrations() (in module django_evolution.utils.migrations)

 	update() (django_evolution.compat.datastructures.OrderedDict method)

 	(django_evolution.utils.migrations.MigrationList method)

 	
 	UpgradeMethod (class in django_evolution.consts)

 	use_argparse (django_evolution.compat.commands.BaseCommand property)

V

 	
 	validate_sig_version() (in module django_evolution.signature)

 	value_to_string() (django_evolution.compat.models.GenericRelation method)

 	(django_evolution.models.SignatureField method)

 	values() (django_evolution.compat.datastructures.OrderedDict method)

 	verbosity (django_evolution.evolve.evolver.Evolver attribute)

 	
 	Version (class in django_evolution.models)

 	version (django_evolution.evolve.evolver.Evolver attribute)

 	(django_evolution.models.Evolution attribute)

 	version_id (django_evolution.models.Evolution attribute)

 	VersionManager (class in django_evolution.models)

W

 	
 	walk_model_tree() (in module django_evolution.utils.models)

 	warn() (django_evolution.deprecation.BaseRemovedInDjangoEvolutionWarning class method)

 	when (django_evolution.models.Version attribute)

 	
 	
 wipe-evolution command line option

 	--app-label

 	--noinput

 	EVOLUTION_LABEL

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Django Evolution Documentation

 		
 Frequently Asked Questions

 		
 Who maintains Django Evolution?

 		
 Where do I go for support?

 		
 What about bug reports?

 		
 How do I contribute patches/pull requests?

 		
 Why evolutions and not migrations?

 		
 Can I switch apps from evolutions to migrations?

 		
 Can I switch apps from migrations to evolutions?

 		
 Why do my syncdb/migrate commands act differently?

 		
 Management Commands

 		
 evolution-project-sig

 		
 Example

 		
 Arguments

 		
 evolve

 		
 Creating/Updating Databases

 		
 Generating Hinted Evolutions

 		
 Arguments

 		
 list-evolutions

 		
 Example

 		
 Arguments

 		
 mark-evolution-applied

 		
 Example

 		
 Arguments

 		
 wipe-evolution

 		
 Example

 		
 Arguments

 		
 Project Versioning Policy

 		
 Module and Class References

 		
 Public API

 		
 django_evolution

 		
 django_evolution.conf

 		
 django_evolution.consts

 		
 django_evolution.deprecation

 		
 django_evolution.errors

 		
 django_evolution.evolve

 		
 django_evolution.evolve.base

 		
 django_evolution.evolve.evolver

 		
 django_evolution.evolve.evolve_app_task

 		
 django_evolution.evolve.purge_app_task

 		
 django_evolution.models

 		
 django_evolution.mutations

 		
 django_evolution.mutations.add_field

 		
 django_evolution.mutations.base

 		
 django_evolution.mutations.change_field

 		
 django_evolution.mutations.change_meta

 		
 django_evolution.mutations.delete_application

 		
 django_evolution.mutations.delete_field

 		
 django_evolution.mutations.delete_model

 		
 django_evolution.mutations.move_to_django_migrations

 		
 django_evolution.mutations.rename_app_label

 		
 django_evolution.mutations.rename_field

 		
 django_evolution.mutations.rename_model

 		
 django_evolution.mutations.sql_mutation

 		
 django_evolution.serialization

 		
 django_evolution.signals

 		
 django_evolution.signature

 		
 Private API

 		
 django_evolution.diff

 		
 django_evolution.mock_models

 		
 django_evolution.mutators

 		
 django_evolution.mutators.app_mutator

 		
 django_evolution.mutators.model_mutator

 		
 django_evolution.mutators.sql_mutator

 		
 django_evolution.placeholders

 		
 django_evolution.support

 		
 django_evolution.compat.apps

 		
 django_evolution.compat.commands

 		
 django_evolution.compat.datastructures

 		
 django_evolution.compat.db

 		
 django_evolution.compat.models

 		
 django_evolution.compat.picklers

 		
 django_evolution.compat.py23

 		
 django_evolution.db.common

 		
 django_evolution.db.mysql

 		
 django_evolution.db.postgresql

 		
 django_evolution.db.sql_result

 		
 django_evolution.db.sqlite3

 		
 django_evolution.db.state

 		
 django_evolution.utils.apps

 		
 django_evolution.utils.datastructures

 		
 django_evolution.utils.evolutions

 		
 django_evolution.utils.graph

 		
 django_evolution.utils.migrations

 		
 django_evolution.utils.models

 		
 django_evolution.utils.sql

 		
 Release Notes

 		
 2.x Releases

 		
 Django Evolution 2.3

 		
 Django Evolution 2.2

 		
 Django Evolution 2.1.4

 		
 Django Evolution 2.1.3

 		
 Django Evolution 2.1.2

 		
 Django Evolution 2.1.1

 		
 Django Evolution 2.1

 		
 Django Evolution 2.0

 		
 0.7 Releases

 		
 Django Evolution 0.7.8

 		
 Django Evolution 0.7.7

 		
 Django Evolution 0.7.6

 		
 Django Evolution 0.7.5

 		
 Django Evolution 0.7.4

 		
 Django Evolution 0.7.3

 		
 Django Evolution 0.7.2

 		
 Django Evolution 0.7.1

 		
 Django Evolution 0.7

 		
 Django Evolution 0.7 Beta 1

 		
 0.6 Releases

 		
 Django Evolution 0.6.9

 		
 Django Evolution 0.6.8

 		
 Django Evolution 0.6.7

 		
 Django Evolution 0.6.6

 		
 Django Evolution 0.6.5

 		
 Django Evolution 0.6.4

 		
 Django Evolution 0.6.3

 		
 Django Evolution 0.6.2

 		
 Django Evolution 0.6.1

 		
 Django Evolution 0.6

 		
 0.5 Releases

 		
 Django Evolution 0.5.1

 		
 Django Evolution 0.5

